Electrospray deposition of quantum dot-doped Ge 23 Sb 7 S 70 chalcogenide glass films

Abstract The incorporation of quantum dots (QDs) into chalcogenide glass films is attractive for their luminescent properties. Such QD-doped glass structures could serve as a compact, on-chip light source for planar photonic devices. Typical processing methods such as spin coating have limitations of excessive material waste, little control on the pattern of the film and difficulty for scale-up. To overcome these limitations, this study introduces electrospray as a more versatile processing method and has deposited QD-doped chalcogenide glass thin films. The parameters of the electrospray process are prudently chosen to ensure one or none QD is enclosed per liquid droplet. The transmission electron microscopy imaging of resultant films confirm enhanced QD dispersion with reduced aggregations. Absorption and photoluminescence characterization shows the QD-doped chalcogenide glass films prepared by electrospray maintain signature spectra of QDs from the manufacturer.

[1]  Zhiqiang Gao,et al.  Enhancement of the performance of organic solar cells by electrospray deposition with optimal solvent system , 2014 .

[2]  Yutaka Yamagata,et al.  Thin‐Film Fabrication Method for Organic Light‐Emitting Diodes Using Electrospray Deposition , 2009, Advanced materials.

[3]  Sasan Fathpour,et al.  Electrospray Deposition of Uniform Thickness Ge23Sb7S70 and As40S60 Chalcogenide Glass Films. , 2016, Journal of visualized experiments : JoVE.

[4]  A. Jaworek,et al.  Electrospray droplet sources for thin film deposition , 2007 .

[5]  T. A. Taha,et al.  Characterization and growth of lead telluride quantum dots doped novel fluorogermanate glass matrix , 2015 .

[6]  Zhiqiang Gao,et al.  Electrospray Dense Suspensions of TiO2 Nanoparticles for Dye Sensitized Solar Cells , 2013 .

[7]  H. Fritzsche,et al.  Electrical conductivity of amorphous chalcogenide alloy films , 1970 .

[8]  Weiwei Deng,et al.  Compact multiplexing of monodisperse electrosprays , 2009 .

[9]  H. Chae,et al.  Electrospray deposition of polymer thin films for organic light-emitting diodes , 2012, Nanoscale Research Letters.

[10]  Kwang-Leong Choy,et al.  Electrostatic assisted aerosol jet deposition of CdS, CdSe and ZnS thin films , 2000 .

[11]  A. Boccaccini Anisotropic densification during sintering of glass powder compacts , 1993 .

[12]  Chao Liu,et al.  Absorption and photoluminescence of PbS QDs in glasses , 2009 .

[13]  Kathleen Richardson,et al.  Photoluminescence in rare-earth-doped chalcogenide thin films , 2000 .

[14]  N. Peyghambarian,et al.  PbS quantum-dot-doped glasses for ultrashort-pulse generation , 2000 .

[15]  Alexander M. Malyarevich,et al.  Semiconductor-doped glass saturable absorbers for near-infrared solid- state lasers , 2008 .

[16]  N. Yao,et al.  Fabrication of uniformly dispersed nanoparticle-doped chalcogenide glass , 2014 .

[17]  B. Sfez,et al.  Photoluminescence and photodarkening effect in erbium-doped chalcogenide glassy films , 2004 .

[18]  J. D. Musgraves,et al.  Incorporation of luminescent CdSe/ZnS core-shell quantum dots and PbS quantum dots into solution-derived chalcogenide glass films , 2013 .

[19]  Danvers E. Johnston,et al.  Deposition of Ge23Sb7S70 chalcogenide glass films by electrospray , 2015 .

[20]  M. Cloupeau,et al.  ELECTROHYDRODYNAMIC SPRAYING FUNCTIONING MODES - A CRITICAL-REVIEW , 1994 .

[21]  Michel Couzi,et al.  Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S , 2006 .

[22]  G. Chern,et al.  Spin‐coated amorphous chalcogenide films , 1982 .

[23]  K. Choy,et al.  Titanium dioxide anatase thin films produced by electrostatic spray assisted vapor deposition (ESAVD) technique , 1999 .

[24]  D. Carswell,et al.  A new method for the preparation of thin films of radioactive material of thin films of radioactive material , 1957 .

[25]  Linan An,et al.  Near-Field Electrospray Microprinting of Polymer-Derived Ceramics , 2013, Journal of Microelectromechanical Systems.

[26]  B. Luther-Davies,et al.  Photoluminescence in Er-doped Ge-As-Se chalcogenide thin films , 2011, 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology.

[27]  Jennifer A Hollingsworth,et al.  Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. , 2004, Journal of the American Chemical Society.

[28]  J. D. Musgraves,et al.  Infrared Colloidal Quantum Dot Chalcogenide Films for Integrated Light Sources , 2011 .

[29]  N. Patel Understanding defects in germanium and silicon for optoelectronic energy conversion , 2016 .

[30]  P. Holloway,et al.  Quantum Dots and Their Multimodal Applications: A Review , 2010, Materials.

[31]  F. Pang,et al.  A PbS quantum dots fiber amplifier excited by evanescent wave. , 2010, Optics express.

[32]  T. A. Taha,et al.  PbTe quantum dots formation in a novel germanate glass , 2014 .

[33]  Takeshi Fukuda,et al.  Organic photoconductive device fabricated by electrospray deposition method , 2009 .

[34]  M. Kovalenko,et al.  Inorganically functionalized PbS-CdS colloidal nanocrystals: integration into amorphous chalcogenide glass and luminescent properties. , 2012, Journal of the American Chemical Society.

[35]  V. B. Smirnov,et al.  Deposition of Er3+ doped chalcogenide glass films by excimer laser ablation , 2003 .

[36]  K. Daneshvar,et al.  Matrix and thermal effects on photoluminescence from PbS quantum dots , 2004 .

[37]  Alfonso M. Gañán-Calvo,et al.  Current and droplet size in the electrospraying of liquids. Scaling laws , 1997 .

[38]  O. Baffa,et al.  Luminescence in semimagnetic Pb1−xMnxSe quantum dots grown in a glass host: Radiative and nonradiative emission processes , 2013 .

[39]  Y. Tver’yanovich Concentration Quenching of Luminescence of Rare-Earth Ions in Chalcogenide Glasses , 2003 .

[40]  F. Bechstedt,et al.  Highly luminescent nanocrystal quantum dots fabricated by lattice-type mismatched epitaxy , 2006 .

[41]  Kathleen Richardson,et al.  Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques , 2011 .

[42]  E. Woodruff,et al.  Synthesis of PbSe/SiO2 and PbTe/SiO2 nanocomposites using the sol–gel process , 2010 .

[43]  John D. Mackenzie,et al.  Zirconia-ormosil films doped with PbS quantum dots , 1999 .

[44]  A. V. Rao,et al.  Effects of temperature and sol–gel parameters on PbS crystallite sizes and their spectral and physical properties in a porous silica matrix , 1998 .

[45]  B. Sfez,et al.  Photoluminescence, photostructural transformations and photoinduced anisotropy in rare-earth-doped chalcogenide glassy films , 2006 .

[46]  J. McMullin,et al.  Rare-earth doped chalcogenide thin films fabricated by pulsed laser deposition , 2005 .

[47]  Renata Reisfeld,et al.  Optical and Conductivity Properties of PbS Nanocrystals in Amorphous Zirconia Sol-Gel Films , 2002 .

[48]  E. Sargent,et al.  Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer , 2003 .