Effects of high-intensity ultrasound on glassy carbon electrodes

Glassy carbon electrodes which have been irradiated with 20-kHz ultrasound from a 475-W generator in dioxane are shown to exhibit enhanced heterogeneous electron-transfer rates for a variety of aqueous redox probes. When sonications are performed in water, however, no significant enhancement effects are observed. Several electroanalytical techniques with different time scales are employed along with scanning electron microscopy to characterize surfaces before and after ultrasonic modification in different solvents. Results indicate that surface roughness does not change appreciably after brief sonication in dioxane, although a small amount of surface pitting occurs

[1]  K. Suslick,et al.  Sonochemistry in non-aqueous liquids , 1984 .

[2]  H. Dewald,et al.  Ultrasonic hydrodynamic modulation voltammetry , 1990 .

[3]  T. Yoshino,et al.  Surface properties of electrochemically pretreated glassy carbon , 1986 .

[4]  Werner G. Kuhr,et al.  Methods to improve electrochemical reversibility at carbon electrodes , 1984 .

[5]  E. Steckhan,et al.  Influence of the supporting electrolyte and the pH on the electrooxidative activation of glassy carbon electrodes , 1992 .

[6]  B. Niemczewski,et al.  A comparison of ultrasonic cavitation intensity in liquids , 1980 .

[7]  T. Kuwana,et al.  Vacuum heat-treatment for activation of glassy carbon electrodes , 1985 .

[8]  T. Meyer,et al.  Electrocatalysis of proton-coupled electron-transfer reactions at glassy carbon electrodes , 1985 .

[9]  R. McCreery,et al.  Repetitive in situ renewal and activation of carbon and platinum electrodes: application to pulse voltammetry , 1987 .

[10]  A. Bard High Speed Controlled Potential Coulometry , 1963 .

[11]  H. Huck Die Messung der Ultraschall‐Diffusion an einer Elektrode und ihre praktische Anwendung , 1987 .

[12]  A. Brajter-toth,et al.  Different methods of graphite electrode treatment and their effect on the electrochemical behavior of a small adsorbing biological molecule, 2,6-diamino-8-purinol. , 1988, Analytical chemistry.

[13]  L. Presta,et al.  Stereospecific Reaction of 3-Methoxy-4-Chloro-7-Aminoisocoumarin with Crystalline Porcine Pancreatic Elastase , 1985 .

[14]  R. Murray,et al.  Spectroelectrochemistry. Application of optically transparent minigrid electrodes under semiinfinite diffusion conditions , 1971 .

[15]  K. Suslick,et al.  Interparticle collisions driven by ultrasound. , 1990, Science.

[16]  R. McCreery,et al.  Effects of wavelength, pulse duration and power density on laser activation of glassy carbon electrodes , 1991 .

[17]  T. Kuwana,et al.  Radiofrequency oxygen plasma treatment of pyrolytic graphite electrode surfaces , 1977 .

[18]  Richard C. Alkire,et al.  Ultrasonically Induced Cavitation Studies of Electrochemical Passivity and Transport Mechanisms II . Experimental , 1991 .

[19]  K. Suslick,et al.  The Temperature of Cavitation , 1991, Science.

[20]  R. McCreery,et al.  In situ laser activation of glassy carbon electrodes , 1986 .

[21]  R. McCreery,et al.  Fast heterogeneous electron transfer rates for glassy carbon electrodes without polishing or activation procedures , 1989 .

[22]  R. Engstrom,et al.  Characterization of electrochemically pretreated glassy carbon electrodes , 1984 .

[23]  R. Engstrom Electrochemical pretreatment of glassy carbon electrodes , 1982 .

[24]  R. McCreery,et al.  Electron transfer kinetics of Fe(CN)63−4− on laser-activated and CN−-modified Pt electrodes , 1992 .