Real-time identification of piezoelectric actuator nonlinearities with application to precision trajectory control

In the absence of profound understanding of the underlying physics of piezoelectric actuators, real-time identification of the system dynamics is a promising strategy for the precision trajectory control. In this paper, an on-line estimation strategy is presented for the actuator nonlinearities and ever-present unmodeled dynamics. More specifically, the influence of unknown terms is gathered into a single perturbation vector which is quantified utilizing actuator input/output real-time values. It is experimentally shown that this technique can accurately estimate actuator nonlinearities in low frequency operation, where the effect of feedback noise is not significant. Utilizing Lyapunov method and the sliding mode control strategy, the control force acting on the actuator is then designed such that the high frequency tracking control and the asymptotic stability of the system are attained. Simulation results are provided to demonstrate the effectiveness of the proposed controller for high frequency applications

[1]  N. Olgac,et al.  Tracking control of a rotating flexible beam using modified frequency-shaped sliding mode control , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[2]  Saeid Bashash,et al.  A New Hysteresis Model for Piezoelectric Actuators With Application to Precision Trajectory Control , 2005 .

[3]  Jonq-Jer Tzen,et al.  Modeling of piezoelectric actuator for compensation and controller design , 2003 .

[4]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[5]  P. A. McKeown,et al.  A Fast Response Piezoelectric Actuator for Servo Correction of Systematic Errors in Precision Machining , 1984 .

[6]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[7]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .

[8]  P. Meckl,et al.  Time-optimal motion control of piezoelectric actuator: STM application , 2004, Proceedings of the 2004 American Control Conference.

[9]  Jean-Jacques E. Slotine,et al.  Sliding controller design for non-linear systems , 1984 .

[10]  Georg Schitter,et al.  Identification and open-loop tracking control of a piezoelectric tube scanner for high-speed scanning-probe microscopy , 2004, IEEE Transactions on Control Systems Technology.

[11]  Y. Stepanenko,et al.  Intelligent control of piezoelectric actuators , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[12]  Michael Goldfarb,et al.  A Lumped Parameter Electromechanical Model for Describing the Nonlinear Behavior of Piezoelectric Actuators , 1997 .

[13]  Ping Jiang,et al.  Integration of photonic bandgap composites with piezoelectric actuators for rejection wavelength tuning , 2002, SPIE Optics + Photonics.

[14]  Hakan Elmali,et al.  Implementation of sliding mode control with perturbation estimation (SMCPE) , 1996, IEEE Trans. Control. Syst. Technol..

[15]  Hakan Elmali,et al.  Theory and implementation of sliding mode control with perturbation estimation (SMCPE) , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[16]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[17]  Hewon Jung,et al.  Tracking control of piezoelectric actuators , 2001 .

[18]  Chih-Lyang Hwang,et al.  Trajectory tracking of large-displacement piezoelectric actuators using a nonlinear observer-based variable structure control , 2005, IEEE Transactions on Control Systems Technology.

[19]  Cameron N. Riviere,et al.  Modeling rate-dependent hysteresis in piezoelectric actuators , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[20]  H. I. Schlaberg,et al.  Piezoelectric polymer composite arrays for ultrasonic medical imaging applications , 1994 .

[21]  Musa Jouaneh,et al.  Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators , 1997 .

[22]  S. Li-ning,et al.  Tracking control of piezoelectric actuator based on a new mathematical model , 2004 .

[23]  Yi Guo,et al.  An H∞ almost disturbance decoupling robust controller design for a piezoelectric bimorph actuator with hysteresis , 1999, IEEE Trans. Control. Syst. Technol..

[24]  Sun Lining,et al.  Adaptive inverse control for piezoelectric actuator with dominant hysteresis , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..