Efficient Numerical Continuation and Stability Analysis of Spatiotemporal Quadratic Optical Solitons

A numerical method is set out which efficiently computes stationary (z-independent) two- and three-dimensional spatiotemporal solitons in second-harmonic-generating media. The method relies on a Chebyshev decomposition with an infinite mapping, bunching the collocation points near the soliton core. Known results for the type-I interaction are extended and a stability boundary is found by two-parameter continuation as defined by the Vakhitov--Kolokolov criteria. The validity of this criterion is demonstrated in (2+1) dimensions by simulation and direct calculation of the linear spectrum. The method has wider applicability for general soliton-bearing equations in (2+1) and (3+1) dimensions.

[1]  H. B. Keller,et al.  NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .

[2]  Mark J. Friedman,et al.  Numerical computation and continuation of invariant manifolds connecting fixed points , 1991 .

[3]  Pelinovsky,et al.  Instability of solitons governed by quadratic nonlinearities. , 1995, Physical review letters.

[4]  Yuri S. Kivshar,et al.  Self-guided beams in a diffractive χ(2) medium: variational approach , 1995 .

[5]  B. Luce Homoclinic explosions in the complex Ginzburg-Landau equation , 1995 .

[6]  A. Buryak Solitons due to quadratic nonlinearities , 1996 .

[7]  Drummond,et al.  Simultaneous solitary-wave solutions in a nonlinear parametric waveguide. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Björn Sandstede,et al.  A numerical toolbox for homoclinic bifurcation analysis , 1996 .

[9]  Lixin Liu,et al.  Computation and Continuation of Homoclinic and Heteroclinic Orbits with Arclength Parameterization , 1997, SIAM J. Sci. Comput..

[10]  Boris A. Malomed,et al.  Spatiotemporal solitons in multidimensional optical media with a quadratic nonlinearity , 1997 .

[11]  Dirk Roose,et al.  An Adaptive Newton-Picard Algorithm with Subspace Iteration for Computing Periodic Solutions , 1998, SIAM J. Sci. Comput..

[12]  Dmitry V. Skryabin,et al.  Generation and stability of optical bullets in quadratic nonlinear media , 1998 .

[13]  D. Skryabin Stability of multi-parameter solitons: asymptotic approach , 1999, patt-sol/9906003.

[14]  Frank W. Wise,et al.  Generation of Optical Spatiotemporal Solitons , 1999 .

[15]  L. Torner,et al.  Elliptical light bullets , 1999 .

[16]  Lederer,et al.  Three-dimensional walking spatiotemporal solitons in quadratic media , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  F. Wise,et al.  Noncollinear generation of optical spatiotemporal solitons and application to ultrafast digital logic. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  K. Beckwitt,et al.  Two-dimensional optical spatiotemporal solitons in quadratic media , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Malomed,et al.  Embedded solitons in a three-wave system , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Dmitry V. Skryabin,et al.  Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications , 2002 .

[21]  B. Malomed,et al.  Temporal solitons in quadratic nonlinear media with opposite group-velocity dispersions at the fundamental and second harmonics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[23]  Emilio Freire,et al.  Continuation of periodic orbits in conservative and Hamiltonian systems , 2003 .