Integral column generation

The integral simplex using decomposition (ISUD) algorithm was recently developed to solve efficiently set partitioning problems containing a number of variables that can all be enumerated a priori. This primal algorithm generates a sequence of integer solutions with decreasing costs, leading to an optimal or near-optimal solution depending on the stopping criterion used. In this paper, we develop an integral column generation (ICG) heuristic that combines ISUD and column generation to solve set partitioning problems with a very large number of variables. Computational experiments on instances of the public transit vehicle and crew scheduling problem and of the airline crew pairing problem involving up to 2000 constraints show that ICG clearly outperforms two popular column generation heuristics (the restricted master heuristic and the diving heuristic). ICG can yield optimal or near-optimal solutions in less than one hour of computational time, generating up to 300 integer solutions during the solution process.

[1]  François Soumis,et al.  Airline crew scheduling: models, algorithms, and data sets , 2014, EURO J. Transp. Logist..

[2]  Andrea Lodi,et al.  Integral Simplex Using Decomposition with Primal Cuts , 2014, SEA.

[3]  Ruslan Sadykov,et al.  Column Generation based Primal Heuristics , 2010, Electron. Notes Discret. Math..

[4]  François Soumis,et al.  Influence of the normalization constraint on the integral simplex using decomposition , 2017, Discret. Appl. Math..

[5]  Egon Balas,et al.  On the Set-Covering Problem , 1972, Oper. Res..

[6]  Stefan Irnich,et al.  Shortest Path Problems with Resource Constraints , 2005 .

[7]  François Soumis,et al.  Dynamic constraint and variable aggregation in column generation , 2014, Eur. J. Oper. Res..

[8]  Torbjörn Larsson,et al.  Column generation in the integral simplex method , 2009, Eur. J. Oper. Res..

[9]  Torbjörn Larsson,et al.  All-integer column generation for set partitioning: Basic principles and extensions , 2014, Eur. J. Oper. Res..

[10]  Guy Desaulniers,et al.  Multi-phase dynamic constraint aggregation for set partitioning type problems , 2010, Math. Program..

[11]  Jacques Desrosiers,et al.  Selected Topics in Column Generation , 2002, Oper. Res..

[12]  Egon Balas,et al.  On the Set-Covering Problem: II. An Algorithm for Set Partitioning , 1972, Oper. Res..

[13]  Omar J. Ibarra-Rojas,et al.  Planning, operation, and control of bus transport systems: A literature review , 2015 .

[14]  Gerald L. Thompson An Integral Simplex Algorithm for Solving Combinatorial Optimization Problems , 2002, Comput. Optim. Appl..

[15]  Guy Desaulniers,et al.  Aircrew pairings with possible repetitions of the same flight number , 2009, Comput. Oper. Res..

[16]  Guy Desaulniers,et al.  An Improved Primal Simplex Algorithm for Degenerate Linear Programs , 2007, INFORMS J. Comput..

[17]  Guy Desaulniers,et al.  Dynamic Aggregation of Set-Partitioning Constraints in Column Generation , 2003, Oper. Res..

[18]  Martin W. P. Savelsbergh,et al.  Branch-and-Price: Column Generation for Solving Huge Integer Programs , 1998, Oper. Res..

[19]  Andrea Lodi,et al.  Integral simplex using decomposition with primal cutting planes , 2017, Math. Program..

[20]  François Soumis,et al.  Improving ILP Solutions by Zooming Around an Improving Direction , 2013 .

[21]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[22]  François Vanderbeck,et al.  Implementing Mixed Integer Column Generation , 2005 .

[23]  François Soumis,et al.  Integral Simplex Using Decomposition for the Set Partitioning Problem , 2014, Oper. Res..

[24]  Jacques Desrosiers,et al.  Simultaneous Vehicle and Crew Scheduling in Urban Mass Transit Systems , 1998, Transp. Sci..

[25]  Jacques Desrosiers,et al.  Crew Pairing at Air France , 1993 .