Extensional proofs in a propositional logic modulo isomorphisms

System I is a proof language for a fragment of propositional logic where isomorphic propositions, such as $A\wedge B$ and $B\wedge A$, or $A\Rightarrow(B\wedge C)$ and $(A\Rightarrow B)\wedge(A\Rightarrow C)$ are made equal. System I enjoys the strong normalisation property. This is sufficient to prove the existence of empty types, but not to prove the introduction property (every closed term in normal form is an introduction). Moreover, a severe restriction had to be made on the types of the variables in order to obtain the existence of empty types. We show here that adding $\eta$-expansion rules to System I permits to drop this restriction, and yields a strongly normalising calculus with enjoying the full introduction property.

[1]  Alexandre Miquel,et al.  Realizability in the Unitary Sphere , 2019, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[2]  Antonio Bucciarelli,et al.  A relational semantics for parallelism and non-determinism in a functional setting , 2012, Ann. Pure Appl. Log..

[3]  Roberto Di Cosmo,et al.  Isomorphisms of Types , 1995, Progress in Theoretical Computer Science.

[4]  Lionel Vaux The algebraic lambda calculus , 2009, Math. Struct. Comput. Sci..

[5]  Neil Ghani,et al.  The virtues of eta-expansion , 1995, Journal of Functional Programming.

[6]  Roberto Di Cosmo,et al.  A short survey of isomorphisms of types , 2005, Mathematical Structures in Computer Science.

[7]  Mariangiola Dezani-Ciancaglini,et al.  A Filter Model for Concurrent lambda-Calculus , 1998, SIAM J. Comput..

[8]  Roberto Di Cosmo Review of Isomorphisms of Types:: from λ-calculus to information retrieval and language design , 1997 .

[9]  Ugo de'Liguoro,et al.  Non deterministic extensions of untyped-calculus , 1995 .

[10]  Benoît Valiron,et al.  The Vectorial Lambda-Calculus , 2013, ArXiv.

[11]  Alejandro Díaz-Caro,et al.  Linearity in the Non-deterministic Call-by-Value Setting , 2012, WoLLIC.

[12]  Per Martin-Löf,et al.  Intuitionistic type theory , 1984, Studies in proof theory.

[13]  Herman Geuvers,et al.  Pure Type Systems without Explicit Contexts , 2010, LFMTP.

[14]  Gilles Dowek,et al.  Lineal: A linear-algebraic Lambda-calculus , 2017, Log. Methods Comput. Sci..

[15]  ADOLFO PIPERNO,et al.  A FILTER MODEL FOR CONCURRENT -CALCULUS MARIANGIOLA DEZANI-CIANCAGLINI AND UGO DE'LIGUORO DIPARTIMENTO DI INFORMATICA UNIVERSIT , 1998 .

[16]  Gilles Dowek,et al.  Proof Normalisation in a Logic Identifying Isomorphic Propositions , 2015, FSCD.

[17]  Kristian Støvring,et al.  Extending the Extensional Lambda Calculus with Surjective Pairing is Conservative , 2005, Log. Methods Comput. Sci..

[18]  Michele Pagani,et al.  Linearity, Non-determinism and Solvability , 2010, Fundam. Informaticae.

[19]  Roberto Di Cosmo,et al.  Provable isomorphisms of types , 1992, Mathematical Structures in Computer Science.

[20]  Pablo Arrighi,et al.  A System F accounting for scalars , 2009, 0903.3741.

[21]  Laurent Regnier,et al.  Une équivalence sur les lambda-termes , 1994, Theor. Comput. Sci..

[22]  Gilles Dowek,et al.  Proof normalization modulo , 1998, Journal of Symbolic Logic.

[23]  Mikael Rittri,et al.  Retrieving Library Identifiers via Equational Matching of Types , 1990, CADE.

[24]  Pablo E. Martínez López,et al.  Isomorphisms considered as equalities: Projecting functions and enhancing partial application through an implementation of λ+ , 2015, IFL '15.

[25]  Claude Kirchner,et al.  Theorem Proving Modulo , 2003, Journal of Automated Reasoning.

[26]  Jonghyun Park,et al.  Mechanizing Metatheory Without Typing Contexts , 2013, Journal of Automated Reasoning.

[27]  Gilles Dowek,et al.  Typing Quantum Superpositions and Measurement , 2016, TPNC.

[28]  Gérard Boudol,et al.  Lambda-Calculi for (Strict) Parallel Functions , 1994, Inf. Comput..

[29]  Gilles Dowek,et al.  Linear-algebraic lambda-calculus: higher-order, encodings, and confluence , 2008, RTA.

[30]  Thierry Coquand,et al.  The Calculus of Constructions , 1988, Inf. Comput..

[31]  Olivier Laurent Classical isomorphisms of types , 2005, Math. Struct. Comput. Sci..