Complex Dynamics in One-Dimensional Nonlinear Schrödinger Equations with Stepwise Potential

We prove the existence and multiplicity of periodic solutions as well as solutions presenting a complex behavior for the one-dimensional nonlinear Schrodinger equation where the potential approximates a two-step function. The term generalizes the typical - power nonlinearity considered by several authors in this context. Our approach is based on some recent developments of the theory of topological horseshoes, in connection with a linked twist maps geometry, which are applied to the discrete dynamics of the Poincare map. We discuss the periodic and the Neumann boundary conditions. The value of the term although small, can be explicitly estimated.

[1]  M. Pino,et al.  Local mountain passes for semilinear elliptic problems in unbounded domains , 1996 .

[2]  T. Küpper,et al.  Bifurcation of asymmetric solutions in nonlinear optical media , 2001 .

[3]  H. Othmer,et al.  Subharmonic resonance and chaos in forced excitable systems , 1999, Journal of mathematical biology.

[4]  F. Zanolin,et al.  An Example of Chaos for a Cubic Nonlinear Schrödinger Equation with Periodic Inhomogeneous Nonlinearity , 2012 .

[5]  P. Holmes,et al.  Homoclinic orbits for eventually autonomous planar flows , 1992 .

[6]  D. Papini,et al.  Multiple homoclinic solutions for a one-dimensional Schrödinger equation , 2016 .

[7]  S. Wiggins On the detection and dynamical consequences of orbits homoclinic to hyperbolic periodic orbits and normally hyperbolic invariant tori in a class of ordinary differential equations , 1988 .

[8]  Alan Weinstein,et al.  Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential , 1986 .

[9]  Spiraling bifurcation diagrams in superlinear indefinite problems , 2014 .

[10]  V. Konotop,et al.  On the Existence of Dark Solitons in a Cubic-Quintic Nonlinear Schrödinger Equation with a Periodic Potential , 2008 .

[11]  Amit Huppert,et al.  Seasonal dynamics and thresholds governing recurrent epidemics , 2008, Journal of mathematical biology.

[12]  S. Wiggins Chaos in the dynamics generated by sequences of maps, with applications to chaotic advection in flows with aperiodic time dependence , 1999 .

[13]  D. Papini,et al.  Asymptotic and chaotic solutions of a singularly perturbed Nagumo-type equation , 2015, 1503.05303.

[14]  Matthias Winter,et al.  Multiple boundary peak solutions for some singularly perturbed Neumann problems , 2000 .

[15]  P. Grindrod,et al.  A model of a myelinated nerve axon: threshold behaviour and propagation , 1985, Journal of mathematical biology.

[16]  Charles Alexander Stuart,et al.  Guidance properties of nonlinear planar waveguides , 1993 .

[17]  J. Yorke,et al.  Topological Horseshoes , 2001 .

[18]  F. Zanolin,et al.  High multiplicity and complexity of thebifurcation diagrams of large solutions for a class ofsuperlinear indefinite problems , 2013 .

[19]  James A. Yorke,et al.  A Chaos Lemma , 2001, The American mathematical monthly.

[20]  K. Palmer Transversal heteroclinic points and Cherry's example of a nonintegrable Hamiltonian system , 1986 .

[21]  Superlinear Indefinite Equations on the Real Line and Chaotic Dynamics , 2002 .

[22]  Zbigniew Galias,et al.  Abundance of homoclinic and heteroclinic orbits and rigorous bounds for the topological entropy for the Hénon map , 2001 .

[23]  P. Felmer,et al.  High Frequency Solutions for the Singularly-Perturbed One-Dimensional Nonlinear Schrödinger Equation , 2006 .

[24]  B. Aulbach,et al.  On Three Definitions of Chaos , 2001 .

[25]  A. Ambrosetti,et al.  Homoclinics and complex dynamics in slowly oscillating systems , 1998 .

[26]  A. Ambrosetti,et al.  A P ] 2 3 N ov 2 00 0 Multiplicity results for some nonlinear Schrödinger equations with potentials , 2000 .

[27]  Rob Sturman,et al.  The Mathematical Foundations of Mixing: Preface , 2006 .

[28]  E. N. Dancer,et al.  MULTIPEAK SOLUTIONS FOR A SINGULARLY PERTURBED NEUMANN PROBLEM , 1999 .

[29]  Carmen Chicone,et al.  The monotonicity of the period function for planar Hamiltonian vector fields , 1987 .

[30]  Marian Gidea,et al.  Covering relations for multidimensional dynamical systems , 2004 .

[31]  Vadim Zharnitsky Breakdown of Stability of Motion in Superquadratic Potentials , 1996 .

[32]  Grassberger,et al.  Unexpected behavior of nonlinear Schrödinger solitons in an external potential. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  Serafim Kalliadasis,et al.  Wave Propagation in Spatially Distributed Excitable Media , 2003, SIAM J. Appl. Math..

[34]  H. McKean Nagumo's equation , 1970 .

[35]  K. Yagasaki Monotonicity of the period function for u″−u+up=0 with p∈R and p>1 , 2013 .

[36]  Pejman Rohani,et al.  Seasonnally forced disease dynamics explored as switching between attractors , 2001 .

[37]  P. Zgliczynski Computer assisted proof of chaos in the Rössler equations and in the Hénon map , 1997 .

[38]  James P. Keener,et al.  Propagation of Waves in an Excitable Medium with Discrete Release Sites , 2000, SIAM J. Appl. Math..

[39]  F. Zanolin,et al.  Chaos in periodically perturbed planar Hamiltonian systems using linked twist maps , 2010 .

[40]  V. Arnold,et al.  Mathematical aspects of classical and celestial mechanics , 1997 .

[41]  D. Saari,et al.  Stable and Random Motions in Dynamical Systems , 1975 .

[42]  Yanheng Ding,et al.  On a nonlinear Schrödinger equation with periodic potential , 1999 .

[43]  Xuefeng Wang On concentration of positive bound states of nonlinear Schrödinger equations , 1993 .

[44]  Bernd Blasius,et al.  A model for seasonal phytoplankton blooms. , 2005, Journal of theoretical biology.

[45]  F. Zanolin,et al.  Complex dynamics in a nerve fiber model with periodic coefficients , 2007, 0708.2342.

[46]  F. Zanolin,et al.  Example of a suspension bridge ODE model exhibiting chaotic dynamics: A topological approach☆ , 2008 .

[47]  K. Mischaikow,et al.  Chaotic Solutions in Slowly Varying Perturbations of Hamiltonian Systems with Applications to Shallow Water Sloshing , 2002 .

[48]  J. M. Almira,et al.  Invariance of the stability of meissner’s equation under a permutation of its intervals , 2001 .

[49]  Marina Pireddu,et al.  MULTIPLE PERIODIC SOLUTIONS AND COMPLEX DYNAMICS FOR SECOND ORDER ODES VIA LINKED TWIST MAPS , 2007 .

[50]  Víctor Padrón,et al.  Pattern Formation in a Model of an Injured Nerve Fiber , 2009, SIAM J. Appl. Math..

[51]  W. Ni,et al.  Locating the peaks of least energy solutions to a semilinear Neumann problem , 1993 .

[52]  Tassilo Küpper,et al.  Existence and bifurcation of solutions for nonlinear perturbations of the periodic Schrödinger equation , 1992 .

[53]  J. López-Gómez Varying bifurcation diagrams of positive solutions for a class of indefinite superlinear boundary value problems , 1999 .

[54]  A. Ambrosetti,et al.  Semiclassical States of Nonlinear Schrödinger Equations , 1997 .

[55]  Stephen Wiggins,et al.  Foundations of chaotic mixing , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[56]  M. Levi On Littlewood’s Counterexample of Unbounded Motions in Superquadratic Potentials , 1992 .

[57]  D. Frantzeskakis,et al.  Matter-wave solitons with a periodic, piecewise-constant scattering length , 2007, 0712.0986.

[58]  F. Zanolin,et al.  Periodic solutions for a class of second order ODEs with a Nagumo cubic type nonlinearity , 2012 .

[59]  M. Pino,et al.  Existence of positive bound states of nonlinear Schrödinger equations with saddle-like potential , 1998 .

[60]  D. Stoffer,et al.  On the Definition of Chaos , 1989 .

[61]  J. Cossey,et al.  A note on groups with hamiltonian quotients , 1998 .

[62]  James P. Keener,et al.  Wave-Block in Excitable Media Due to Regions of Depressed Excitability , 2000, SIAM J. Appl. Math..

[63]  Oscillatory Escape in a Duffing Equation with a Polynomial Potential , 1997 .

[64]  J. Littlewood Unbounded Solutions of an Equation ÿ+g{y)=p(t), with p(t) Periodic and Bounded, and g(y)/y → ∞ as y→±∞ , 1966 .

[65]  R. Devaney Subshifts of finite type in linked twist mappings , 1978 .

[66]  R. Srzednicki,et al.  A GEOMETRIC METHOD FOR DETECTING CHAOTIC DYNAMICS , 1997 .

[67]  High-frequency chaotic solutions for a slowly varying dynamical system , 2006, Ergodic Theory and Dynamical Systems.

[68]  G. Alfimov,et al.  Coding of nonlinear states for the Gross-Pitaevskii equation with periodic potential , 2012, 1211.0754.

[69]  Marina Pireddu,et al.  Chaotic Dynamics for Maps in One and Two Dimensions: a Geometrical Method and Applications to Economics , 2009, Int. J. Bifurc. Chaos.

[70]  D. Aronson,et al.  WAVE PROPAGATION AND BLOCKING IN INHOMOGENEOUS MEDIA , 2005 .

[71]  P. J. Torres,et al.  Existence of Dark Soliton Solutions of the Cubic Nonlinear Schrödinger Equation with Periodic Inhomogeneous Nonlinearity , 2008 .

[72]  W. Ni,et al.  On the shape of least‐energy solutions to a semilinear Neumann problem , 1991 .

[73]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[74]  Tatsuya Watanabe Existence of positive multi-peaked solutions to a nonlinear Schrödinger equation arising in nonlinear optics , 2005 .

[75]  Klaudiusz Wójcik,et al.  Isolating Segments, Fixed Point Index, and Symbolic Dynamics , 2000 .