Calibration robust entanglement detection beyond Bell inequalities

In its vast majority entanglement verification is examined either in the complete characterized or totally device independent scenario. The assumptions imposed by these extreme cases are often either too weak or strong for real experiments. Here we investigate this detection task for the intermediate regime where partial knowledge of the measured observables is known, considering cases like orthogonal, sharp or only dimension bounded measurements. We show that for all these assumptions it is not necessary to violate a corresponding Bell inequality in order to detect entanglement. We derive strong detection criteria that can be directly evaluated for experimental data and which are robust against large classes of calibration errors. The conditions are even capable of detecting bound entanglement under the sole assumption of dimension bounded measurements.

[1]  Nicolas Brunner,et al.  Semi-device-independent bounds on entanglement , 2010, 1012.1513.

[2]  Norbert Lütkenhaus,et al.  Entanglement as a precondition for secure quantum key distribution. , 2004, Physical review letters.

[3]  Christian Kurtsiefer,et al.  Experimentally faking the violation of Bell's inequalities. , 2011, Physical review letters.

[4]  Tobias Moroder,et al.  Entanglement verification with realistic measurement devices via squashing operations , 2009, 0909.4212.

[5]  Oliver Rudolph Further Results on the Cross Norm Criterion for Separability , 2005, Quantum Inf. Process..

[6]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[7]  J. Uffink,et al.  Strengthened Bell inequalities for orthogonal spin directions , 2006, quant-ph/0604145.

[8]  C. Ross Found , 1869, The Dental register.

[9]  T. Vértesi,et al.  Multisetting Bell-type inequalities for detecting genuine multipartite entanglement , 2011, 1102.4320.

[10]  J. Barrett Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality , 2001, quant-ph/0107045.

[11]  B. Terhal Bell inequalities and the separability criterion , 1999, quant-ph/9911057.

[12]  Fabio Benatti,et al.  Non-Decomposable Quantum Dynamical Semigroups and Bound Entangled States , 2004, Open Syst. Inf. Dyn..

[13]  Xiongfeng Ma,et al.  ar X iv : q ua ntp h / 05 12 08 0 v 2 1 1 A pr 2 00 6 TIMESHIFT ATTACK IN PRACTICAL QUANTUM , 2005 .

[14]  Tamás Vértesi,et al.  Quantum nonlocality does not imply entanglement distillability. , 2011, Physical review letters.

[15]  N. Lutkenhaus,et al.  Experimental procedures for entanglement verification , 2007 .

[16]  Sae Woo Nam,et al.  Conclusive quantum steering with superconducting transition-edge sensors , 2011, Nature Communications.

[17]  N. Gisin,et al.  From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.

[18]  P. Parrilo,et al.  Complete family of separability criteria , 2003, quant-ph/0308032.

[19]  V. Scarani,et al.  Testing the dimension of Hilbert spaces. , 2008, Physical review letters.

[20]  Stefano Pironio,et al.  Device-independent witnesses of genuine multipartite entanglement. , 2011, Physical review letters.

[21]  Nicolas Brunner,et al.  Semi-device-independent security of one-way quantum key distribution , 2011, 1103.4105.

[22]  J. I. D. Vicente,et al.  Multipartite entanglement detection from correlation tensors , 2011, 1106.5756.

[23]  G. Tóth,et al.  Entanglement criteria based on local uncertainty relations are strictly stronger than the computable cross norm criterion , 2006, quant-ph/0604050.

[24]  Normand J. Beaudry,et al.  Squashing models for optical measurements in quantum communication. , 2008, Physical review letters.

[25]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[26]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[27]  T. Paterek,et al.  Correlation-tensor criteria for genuine multiqubit entanglement , 2011, 1110.4108.

[28]  W. Vogel,et al.  Fake violations of the quantum Bell-parameter bound , 2010, 1004.3700.

[29]  P. Lougovski,et al.  Strengthened Bell inequalities for entanglement verification , 2009, 0908.0267.

[30]  S M Roy Multipartite separability inequalities exponentially stronger than local reality inequalities. , 2005, Physical review letters.

[31]  O. Gühne,et al.  Experimental multiparticle entanglement dynamics induced by decoherence , 2010, 1005.1965.

[32]  M. Horne,et al.  Experimental Consequences of Objective Local Theories , 1974 .

[33]  A. Peres All the Bell Inequalities , 1998, quant-ph/9807017.

[34]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[35]  Ling-An Wu,et al.  A matrix realignment method for recognizing entanglement , 2003, Quantum Inf. Comput..

[36]  K. Tamaki,et al.  Security proof for quantum-key-distribution systems with threshold detectors , 2008, 0803.4226.

[37]  Horodecki Information-theoretic aspects of inseparability of mixed states. , 1996, Physical review. A, Atomic, molecular, and optical physics.