Mechanical Energy Harvesting and Self-Powered Electronic Applications of Textile-Based Piezoelectric Nanogenerators: A Systematic Review

[1]  Y. Liu,et al.  An ultra-thin piezoelectric nanogenerator with breathable, superhydrophobic, and antibacterial properties for human motion monitoring , 2023, Nano Research.

[2]  Mohammad Reza Yousefi Darestani,et al.  Cesium Lead Halide Perovskite Decorated Polyvinylidene Fluoride Nanofibers for Wearable Piezoelectric Nanogenerator Yarns , 2023, ACS nano.

[3]  Suni Vasudevan,et al.  Human body stimuli-responsive flexible polyurethane electrospun composite fibers-based piezoelectric nanogenerators , 2023, Journal of Materials Science.

[4]  Hasan Kasım,et al.  Investigation of the optimum vibration energy harvesting performance of electrospun PVDF/BaTiO3 nanogenerator , 2022, Journal of Composite Materials.

[5]  D. Mulvihill,et al.  Multiscale in-situ quantification of the role of surface roughness and contact area using a novel Mica-PVS triboelectric nanogenerator , 2022, Nano Energy.

[6]  Y. Fuh,et al.  All directional nanogenerators (NGs) with a highly flexible and near field electrospun concentrically aligned nano/micro P(VDF-TrFE) fibers , 2022, Microsystem Technologies.

[7]  P. Fang,et al.  Piezoelectric Nanogenerator Based on Electrospinning PVDF/Cellulose Acetate Composite Membranes for Energy Harvesting , 2022, Materials.

[8]  D. Mulvihill,et al.  High-Performance Triboelectric Nanogenerators Based on Commercial Textiles: Electrospun Nylon 66 Nanofibers on Silk and PVDF on Polyester , 2022, ACS applied materials & interfaces.

[9]  E. B. Gowd,et al.  High-Performance Flexible Piezoelectric Nanogenerator Based on Electrospun PVDF-BaTiO3 Nanofibers for Self-Powered Vibration Sensing Applications. , 2022, ACS applied materials & interfaces.

[10]  Byeong Kon Kim,et al.  Weave-pattern-dependent fabric piezoelectric pressure sensors based on polyvinylidene fluoride nanofibers electrospun with 50 nozzles , 2022, npj Flexible Electronics.

[11]  K. Hornbostel,et al.  A review of ceramic, polymer and composite piezoelectric materials , 2022, Journal of Physics D: Applied Physics.

[12]  Young Kwang Kim,et al.  Effects of biomimetic cross-sectional morphology on the piezoelectric properties of BaTiO3 nanorods-contained PVDF fibers , 2022, Nano Energy.

[13]  Sourav Banerjee,et al.  Investigating the role of copper oxide (CuO) nanorods in designing flexible piezoelectric nanogenerator composed of polyacrylonitrile (PAN) electrospun web-based fibrous material , 2022, Journal of Materials Science: Materials in Electronics.

[14]  Pengcheng Jiao,et al.  Hybrid Piezoelectric and Triboelectric Nanogenerators for Energy Harvesting and Walking Sensing , 2022, Energy Technology.

[15]  S. Banerjee,et al.  A lead-free flexible piezoelectric-triboelectric hybrid nanogenerator composed of uniquely designed PVDF/KNN-ZS nanofibrous web , 2022, Energy.

[16]  Hui Yang,et al.  Porous, multi-layered piezoelectric composites based on highly oriented PZT/PVDF electrospinning fibers for high-performance piezoelectric nanogenerators , 2021, Journal of Advanced Ceramics.

[17]  X. Hou,et al.  The mechanism of PVDF/CsPbBr3 perovskite composite fiber as self-polarization piezoelectric nanogenerator with ultra-high output voltage , 2022, Journal of Materials Chemistry A.

[18]  Guodong Zhu,et al.  Enhanced piezoelectric performance of PVDF/BiCl3/ZnO nanofiber-based piezoelectric nanogenerator , 2021, European Polymer Journal.

[19]  A. Bedeloglu,et al.  WEARABLE TEXTILE-BASED PIEZOELECTRIC NANOGENERATORS WITH GRAPHENE/ZNO/AgNW , 2021, Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering.

[20]  S. Ramakrishna,et al.  A Review on Electrospun Nanofibers Based Advanced Applications: From Health Care to Energy Devices , 2021, Polymers.

[21]  Michal Petrů,et al.  Classification of Textile Polymer Composites: Recent Trends and Challenges , 2021, Polymers.

[22]  Sumanta Kumar Karan,et al.  Autonomous self-repair in piezoelectric molecular crystals , 2021, Science.

[23]  Wei Fan,et al.  Recent Progress of Wearable Piezoelectric Nanogenerators , 2021 .

[24]  S. Kar‐Narayan,et al.  Piezoelectric polymers: theory, challenges and opportunities , 2021, International Materials Reviews.

[25]  Y. Fuh,et al.  3D Stacked Near‐Field Electrospun Nanoporous PVDF‐TrFE Nanofibers as Self‐Powered Smart Sensing in Gait Big Data Analytics , 2021, Advanced Materials Technologies.

[26]  Han Zhang,et al.  P–N junction-based ZnO wearable textile nanogenerator for biomechanical energy harvesting , 2021, Nano Energy.

[27]  Fan Xu,et al.  Piezoelectric enhancement of an electrospun AlN-doped P(VDF-TrFE) nanofiber membrane , 2021 .

[28]  R. Jose,et al.  Effect of Geometrical Parameters on Piezoresponse of Nanofibrous Wearable Piezoelectric Nanofabrics Under Low Impact Pressure , 2020 .

[29]  Syed Wazed Ali,et al.  Leveraging Shape Memory Coupled Piezoelectric Properties in Melt Extruded Composite Filament Based on Polyvinylidene Fluoride and Polyurethane , 2020, Macromolecular Materials and Engineering.

[30]  Kyu oh Kim,et al.  Novel glucose-responsive of the transparent nanofiber hydrogel patches as a wearable biosensor via electrospinning , 2020, Scientific Reports.

[31]  W. Cui,et al.  ECM-inspired micro/nanofibers for modulating cell function and tissue generation , 2020, Science Advances.

[32]  L. Paralı,et al.  Fabrication and vibrational energy harvesting characterization of flexible piezoelectric nanogenerator (PEN) based on PVDF/PZT , 2020 .

[33]  T. Kikutani,et al.  Melt-Spun Fibers for Textile Applications , 2020, Materials.

[34]  Yogendra Kumar Mishra,et al.  Recent Advances in Self‐Powered Tribo‐/Piezoelectric Energy Harvesters: All‐In‐One Package for Future Smart Technologies , 2020, Advanced Functional Materials.

[35]  Q. Ni,et al.  Flexible energy harvester based on aligned PZT/SMPU nanofibers and shape memory effect for curved sensors , 2020 .

[36]  S. W. Ali,et al.  Investigating the role of carbon nanotubes (CNTs) in the piezoelectric performance of a PVDF/KNN-based electrospun nanogenerator. , 2020, Soft matter.

[37]  S. W. Ali,et al.  Flexible lead-free PVDF/SM-KNN electrospun nanocomposite based piezoelectric materials: Significant enhancement of energy harvesting efficiency of the nanogenerator , 2020 .

[38]  Syed Wazed Ali,et al.  A hybrid piezoelectric nanogenerator comprising of KNN/ZnO nanorods incorporated PVDF electrospun nanocomposite webs , 2020, International Journal of Energy Research.

[39]  Yiming Liu,et al.  Recent progress on flexible nanogenerators toward self‐powered systems , 2020, InfoMat.

[40]  S. W. Ali,et al.  Poly (vinylidine fluoride) (PVDF)/Potassium Sodium Niobate (KNN) nanorods based flexible nanocomposite film: Influence of KNN concentration in the performance of nanogenerator , 2020 .

[41]  S. W. Ali,et al.  Influence of High Aspect Ratio Lead‐Free Piezoelectric Fillers in Designing Flexible Fibrous Nanogenerators: Demonstration of Significant High Output Voltage , 2019, Energy Technology.

[42]  Faheem Uddin,et al.  Introductory Chapter: Textile Manufacturing Processes , 2019, Textile Manufacturing Processes.

[43]  Zhong Lin Wang,et al.  Fiber/Fabric‐Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence , 2019, Advanced materials.

[44]  S. W. Ali,et al.  A unique piezoelectric nanogenerator composed of melt-spun PVDF/KNN nanorod-based nanocomposite fibre , 2019, European Polymer Journal.

[45]  Ning Wang,et al.  All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator , 2019, Nano Research.

[46]  Zhenxiang Cheng,et al.  Triaxial braided piezo fiber energy harvesters for self-powered wearable technologies , 2019, Journal of Materials Chemistry A.

[47]  S. Anandhan,et al.  Durable, efficient, and flexible piezoelectric nanogenerator from electrospun PANi/HNT/PVDF blend nanocomposite , 2019 .

[48]  Younan Xia,et al.  Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. , 2019, Chemical reviews.

[49]  Kailiang Ren,et al.  Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting , 2019, Nano Energy.

[50]  Jinhan Cho,et al.  Layer-by-layer assembly for ultrathin energy-harvesting films: Piezoelectric and triboelectric nanocomposite films , 2019, Nano Energy.

[51]  Jiansheng Guo,et al.  ZnO nanorods patterned-textile using a novel hydrothermal method for sandwich structured-piezoelectric nanogenerator for human energy harvesting , 2019, Physica E: Low-dimensional Systems and Nanostructures.

[52]  Ming Liu,et al.  Strategies to achieve high performance piezoelectric nanogenerators , 2019, Nano Energy.

[53]  D. Mandal,et al.  Energy harvesting and self-powered microphone application on multifunctional inorganic-organic hybrid nanogenerator , 2019, Energy.

[54]  Smita Mohanty,et al.  Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review , 2018, Macromolecular Materials and Engineering.

[55]  Daoheng Sun,et al.  Shoepad nanogenerator based on electrospun PVDF nanofibers , 2018, Microsystem Technologies.

[56]  Byeong Kon Kim,et al.  Piezoelectric energy harvesting and charging performance of Pb(Zn1/3Nb2/3)O3–Pb(Zr0.5Ti0.5)O3 nanoparticle-embedded P(VDF-TrFE) nanofiber composite sheets , 2018, Composites Science and Technology.

[57]  S. Z. Ahammad,et al.  Poly(vinylidene fluoride) (PVDF)/potassium sodium niobate (KNN)-based nanofibrous web: A unique nanogenerator for renewable energy harvesting and investigating the role of KNN nanostructures , 2018, Polymers for Advanced Technologies.

[58]  Y. Fuh,et al.  Near-Field Electrospun Piezoelectric Fibers as Sound-Sensing Elements , 2018, Polymers.

[59]  Cédric Cochrane,et al.  3D interlock design 100% PVDF piezoelectric to improve energy harvesting , 2018, Smart Materials and Structures.

[60]  Jeong-Yun Sun,et al.  Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators , 2018, Nature Communications.

[61]  D. Ye,et al.  Large-Scale Direct-Writing of Aligned Nanofibers for Flexible Electronics. , 2018, Small.

[62]  Caofeng Pan,et al.  Piezoelectric Polyacrylonitrile Nanofiber Film-Based Dual-Function Self-Powered Flexible Sensor. , 2018, ACS applied materials & interfaces.

[63]  Liyan Yu,et al.  Energy harvesting textiles for a rainy day: woven piezoelectrics based on melt-spun PVDF microfibres with a conducting core , 2018, npj Flexible Electronics.

[64]  Jonghun Yoon,et al.  Enhanced Piezoelectricity in a Robust and Harmonious Multilayer Assembly of Electrospun Nanofiber Mats and Microbead-Based Electrodes. , 2018, ACS applied materials & interfaces.

[65]  Shahjadi Hisan Farjana,et al.  Environmental profile evaluations of piezoelectric polymers using life cycle assessment , 2018 .

[66]  M. S. Sorayani Bafqi,et al.  Nanofiber alignment tuning: An engineering design tool in fabricating wearable power harvesting devices , 2017 .

[67]  Asli Atalay,et al.  Piezofilm yarn sensor-integrated knitted fabric for healthcare applications , 2017 .

[68]  Jianxin He,et al.  Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor , 2017, Scientific Reports.

[69]  Yewang Su,et al.  Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers , 2017 .

[70]  M. S. Sorayani Bafqi,et al.  Piezoelectric electrospun nanofibrous energy harvesting devices: Influence of the electrodes position and finite variation of dimensions , 2017 .

[71]  John A. Rogers,et al.  Wearable electronics: Nanomesh on-skin electronics. , 2017, Nature nanotechnology.

[72]  Swagata Roy,et al.  Er3+/Fe3+ Stimulated Electroactive, Visible Light Emitting, and High Dielectric Flexible PVDF Film Based Piezoelectric Nanogenerators: A Simple and Superior Self-Powered Energy Harvester with Remarkable Power Density. , 2017, ACS applied materials & interfaces.

[73]  Jung Woo Lee,et al.  Self-assembled three dimensional network designs for soft electronics , 2017, Nature Communications.

[74]  Daniel Therriault,et al.  One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures. , 2017, ACS applied materials & interfaces.

[75]  H. Duan,et al.  Synthesis of Orthorhombic Perovskite-Type ZnSnO3 Single-Crystal Nanoplates and Their Application in Energy Harvesting. , 2017, ACS applied materials & interfaces.

[76]  Araceli Queiruga Dios,et al.  Manufacturing processes in the textile industry. Expert Systems for fabrics production , 2017, DCAI 2017.

[77]  Yiin-Kuen Fuh,et al.  Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition , 2016 .

[78]  T. Trung,et al.  A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system , 2016 .

[79]  Trisha L. Andrew,et al.  All‐Textile Triboelectric Generator Compatible with Traditional Textile Process , 2016 .

[80]  Qiyao Huang,et al.  Textile‐Based Electrochemical Energy Storage Devices , 2016 .

[81]  Sandip Maiti,et al.  An Approach to Design Highly Durable Piezoelectric Nanogenerator Based on Self‐Poled PVDF/AlO‐rGO Flexible Nanocomposite with High Power Density and Energy Conversion Efficiency , 2016 .

[82]  Zhong Lin Wang,et al.  Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors , 2016, Science Advances.

[83]  Nannan Zhang,et al.  Micro-cable structured textile for simultaneously harvesting solar and mechanical energy , 2016, Nature Energy.

[84]  F. Fan,et al.  Flexible Nanogenerators for Energy Harvesting and Self‐Powered Electronics , 2016, Advanced materials.

[85]  Zhong Lin Wang,et al.  A One‐Structure‐Based Hybridized Nanogenerator for Scavenging Mechanical and Thermal Energies by Triboelectric–Piezoelectric–Pyroelectric Effects , 2016, Advanced materials.

[86]  D. Mandal,et al.  Design of In Situ Poled Ce(3+)-Doped Electrospun PVDF/Graphene Composite Nanofibers for Fabrication of Nanopressure Sensor and Ultrasensitive Acoustic Nanogenerator. , 2016, ACS applied materials & interfaces.

[87]  M. Umair,et al.  Fabric manufacturing , 2016 .

[88]  M. Latifi,et al.  Electrospinning/electrospray of polyvinylidene fluoride (PVDF): piezoelectric nanofibers , 2015 .

[89]  Nae-Eung Lee,et al.  High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage , 2015 .

[90]  Kwang-Seok Yun,et al.  Woven flexible textile structure for wearable power-generating tactile sensor array , 2015 .

[91]  Han Byul Kang,et al.  (Na,K)NbO3 nanoparticle-embedded piezoelectric nanofiber composites for flexible nanogenerators , 2015 .

[92]  Meifang Zhu,et al.  Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers , 2015 .

[93]  Steve Dunn,et al.  Piezoelectric nanogenerators – a review of nanostructured piezoelectric energy harvesters , 2015 .

[94]  Ren Zhu,et al.  Environmental effects on nanogenerators , 2015 .

[95]  Xingzhong Zhao,et al.  Self-amplified piezoelectric nanogenerator with enhanced output performance: The synergistic effect of micropatterned polymer film and interweaved silver nanowires , 2015 .

[96]  Min Zhang,et al.  A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application , 2015 .

[97]  Seok-Jin Yoon,et al.  High Output Piezo/Triboelectric Hybrid Generator , 2015, Scientific Reports.

[98]  Kwang-Seok Yun,et al.  Design and characterization of scalable woven piezoelectric energy harvester for wearable applications , 2015 .

[99]  Yu Bai,et al.  Enhanced dielectric performance of BaTiO3/PVDF composites prepared by modified process for energy storage applications , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[100]  Mengdi Han,et al.  High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies , 2015 .

[101]  Zhong Lin Wang,et al.  Triboelectric nanogenerators as self-powered active sensors , 2015 .

[102]  Jinhan Cho,et al.  Layer‐by‐Layer Controlled Perovskite Nanocomposite Thin Films for Piezoelectric Nanogenerators , 2014 .

[103]  J. M. Nóbrega,et al.  Piezoelectric coaxial filaments produced by coextrusion of poly(vinylidene fluoride) and electrically conductive inner and outer layers , 2014 .

[104]  Benjamin C. K. Tee,et al.  Tunable Flexible Pressure Sensors using Microstructured Elastomer Geometries for Intuitive Electronics , 2014 .

[105]  Henry A. Sodano,et al.  A Low‐Frequency Energy Harvester from Ultralong, Vertically Aligned BaTiO3 Nanowire Arrays , 2014 .

[106]  O. Nur,et al.  Mechanical and piezoelectric properties of zinc oxide nanorods grown on conductive textile fabric as an alternative substrate , 2014 .

[107]  Alessandro Chiolerio,et al.  Wearable Electronics and Smart Textiles: A Critical Review , 2014, Sensors.

[108]  Jingjing Zhao,et al.  A Shoe-Embedded Piezoelectric Energy Harvester for Wearable Sensors , 2014, Sensors.

[109]  Liwei Lin,et al.  High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators. , 2014, ACS applied materials & interfaces.

[110]  M. Tascan,et al.  Effects of process parameters on the properties of wet-spun solid PVDF fibers , 2014 .

[111]  A. Merati,et al.  Piezoelectric electrospun nanofibrous materials for self-powering wearable electronic textiles applications , 2014, Journal of Polymer Research.

[112]  Alessandro Tognetti,et al.  Exploiting Wearable Goniometer Technology for Motion Sensing Gloves , 2014, IEEE Journal of Biomedical and Health Informatics.

[113]  Geon-Tae Hwang,et al.  Large‐Area and Flexible Lead‐Free Nanocomposite Generator Using Alkaline Niobate Particles and Metal Nanorod Filler , 2014 .

[114]  Ping Zhao,et al.  Sponge‐Like Piezoelectric Polymer Films for Scalable and Integratable Nanogenerators and Self‐Powered Electronic Systems , 2014 .

[115]  Elias Siores,et al.  Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications , 2014 .

[116]  S. Evoy,et al.  A review of piezoelectric polymers as functional materials for electromechanical transducers , 2014 .

[117]  M. Tascan Optimization of Process Parameters of Wet-Spun Solid PVDF fibers for Maximizing the Tensile Strength and Applied Force at Break and Minimizing the Elongation at Break using the Taguchi Method , 2014 .

[118]  B. Hsiao,et al.  Functionalized electrospun nanofibrous microfiltration membranes for removal of bacteria and viruses , 2014 .

[119]  Ji-Beom Yoo,et al.  Highly Stretchable Piezoelectric‐Pyroelectric Hybrid Nanogenerator , 2014, Advanced materials.

[120]  E. S. Nour,et al.  A Flexible Sandwich Nanogenerator for Harvesting Piezoelectric Potential from Single Crystalline Zinc Oxide Nanowires , 2014 .

[121]  Liwei Lin,et al.  Direct-write PVDF nonwoven fiber fabric energy harvesters via the hollow cylindrical near-field electrospinning process , 2014 .

[122]  Jung-Yong Lee,et al.  Wearable textile battery rechargeable by solar energy. , 2013, Nano letters.

[123]  Erik Nilsson,et al.  Poling and characterization of piezoelectric polymer fibers for use in textile sensors , 2013 .

[124]  Zhong Lin Wang,et al.  Temperature dependence of the piezotronic effect in ZnO nanowires. , 2013, Nano letters.

[125]  Hao Yu,et al.  Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity , 2013, Nanotechnology.

[126]  Zhong Lin Wang,et al.  Triboelectric nanogenerator built inside shoe insole for harvesting walking energy , 2013 .

[127]  Zhong Lin Wang,et al.  Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics , 2013 .

[128]  Hongxia Wang,et al.  Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs , 2013 .

[129]  Ju-Hyuck Lee,et al.  Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation , 2013, Scientific Reports.

[130]  Elias Siores,et al.  Continuous production of piezoelectric PVDF fibre for e-textile applications , 2013 .

[131]  Yonggang Huang,et al.  High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene) , 2013, Nature Communications.

[132]  Zhong Lin Wang,et al.  Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. , 2013, ACS nano.

[133]  Zhong Lin Wang,et al.  Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. , 2012, Angewandte Chemie.

[134]  L. V. Pieterson,et al.  Smart textiles: Challenges and opportunities , 2012 .

[135]  Paul M. Weaver,et al.  Nanostructured p‐n Junctions for Kinetic‐to‐Electrical Energy Conversion , 2012 .

[136]  Hyun-Jin Kim,et al.  Enhancement of piezoelectricity via electrostatic effects on a textile platform , 2012 .

[137]  Jong-Hyun Ahn,et al.  A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes , 2012 .

[138]  Ravinder Dahiya,et al.  Robotic Tactile Sensing: Technologies and System , 2012 .

[139]  Long Lin,et al.  Pyroelectric nanogenerators for harvesting thermoelectric energy. , 2012, Nano letters.

[140]  Liwei Lin,et al.  Piezoelectric nanofibers for energy scavenging applications , 2012 .

[141]  Haji Hassan Masjuki,et al.  A comprehensive review on biodiesel as an alternative energy resource and its characteristics , 2012 .

[142]  F. Boxberg,et al.  Photovoltaics with piezoelectric core‐shell nanowires , 2011 .

[143]  Jaehwan Kim,et al.  A review of piezoelectric energy harvesting based on vibration , 2011 .

[144]  Raeed H. Chowdhury,et al.  Epidermal Electronics , 2011, Science.

[145]  Tong Lin,et al.  Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes , 2011 .

[146]  Eric Loth,et al.  A portable powered ankle-foot orthosis for rehabilitation. , 2011, Journal of rehabilitation research and development.

[147]  Elias Siores,et al.  An investigation of energy harvesting from renewable sources with PVDF and PZT , 2011 .

[148]  Mingui Sun,et al.  A Comparative Study Between Novel Witricity and Traditional Inductive Magnetic Coupling in Wireless Charging , 2011, IEEE Transactions on Magnetics.

[149]  Anja Lund,et al.  Melt spinning of beta-phase poly(vinylidene fluoride) yarns with and without a conductive core , 2011 .

[150]  Seajin Oh,et al.  Controlled continuous patterning of polymeric nanofibers on three-dimensional substrates using low-voltage near-field electrospinning. , 2011, Nano letters.

[151]  Magnus Willander,et al.  Study of the Piezoelectric Power Generation of ZnO Nanowire Arrays Grown by Different Methods , 2011 .

[152]  Guang Zhu,et al.  Flexible high-output nanogenerator based on lateral ZnO nanowire array. , 2010, Nano letters.

[153]  Anja Lund,et al.  Melt spinning of poly(vinylidene fluoride) fibers and the influence of spinning parameters on beta-phase crystallinity , 2010 .

[154]  Mohammed F. Daqaq,et al.  A scalable concept for micropower generation using flow-induced self-excited oscillations , 2010 .

[155]  王军波,et al.  Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency , 2010 .

[156]  Luisa F. Cabeza,et al.  State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization , 2010 .

[157]  Prasanta Kumar Panda,et al.  Review: environmental friendly lead-free piezoelectric materials , 2009, Journal of Materials Science.

[158]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[159]  Henry A. Sodano,et al.  Model of a single mode energy harvester and properties for optimal power generation , 2008 .

[160]  Liwei Lin,et al.  Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns , 2008 .

[161]  Elias Siores,et al.  A piezoelectric fibre composite based energy harvesting device for potential wearable applications , 2008 .

[162]  Xuesi Chen,et al.  Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications. , 2008, Biomacromolecules.

[163]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[164]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[165]  DuSIN RarusrNovt,et al.  MACEDONITE-LEAD TITANATE : A NBW MINERAL , 2007 .

[166]  Zhongwei Jiang,et al.  A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals , 2006 .

[167]  F. Moll,et al.  Optimum Piezoelectric Bending Beam Structures for Energy Harvesting using Shoe Inserts , 2005 .

[168]  T. Takamura,et al.  A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life , 2004 .

[169]  George G. Chase,et al.  Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector , 2004 .

[170]  D. Wise,et al.  Enhanced peripheral nerve regeneration through a poled bioresorbable poly(lactic-co-glycolic acid) guidance channel , 2004, Journal of neural engineering.

[171]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[172]  Carla Hertleer,et al.  Smart clothing: a new life , 2004 .

[173]  Richard B. Cass,et al.  Power Generation from Piezoelectric Lead Zirconate Titanate Fiber Composites , 2002 .

[174]  M. Dresselhaus,et al.  Alternative energy technologies , 2001, Nature.

[175]  E. Fukada History and recent progress in piezoelectric polymers , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[176]  Dragan Damjanovic,et al.  FERROELECTRIC, DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF FERROELECTRIC THIN FILMS AND CERAMICS , 1998 .

[177]  S. M. Hasnain Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques , 1998 .

[178]  Yuquan Chen,et al.  A piezopolymer finger pulse and breathing wave sensor , 1990 .

[179]  J. Scheinbeim,et al.  Piezoelectric properties and ferroelectric hysteresis effects in uniaxially stretched nylon‐11 films , 1984 .

[180]  A. J. Lovinger Ferroelectric Polymers , 1983, Science.

[181]  J. Zussman,et al.  An explanation of anomalous optical properties of topaz , 1979, Mineralogical Magazine.

[182]  P. Curie,et al.  Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées , 1880 .