A discrete damage mechanics model for high cycle fatigue in polycrystalline materials subject to rolling contact

Fatigue behavior of polycrystalline materials is significantly influenced by their microstructural topology. The microstructural heterogeneity is one of the primary reasons for dispersion in high cycle fatigue lives of such materials. In this work, a damage mechanics based fatigue model that incorporates gradual material degradation under cyclic loading is presented in conjunction with a discrete material representation that takes the material microstructural topology into account. Microstructures are generated stochastically through the process of Voronoi tessellation. Micro-crack initiation, coalescence and propagation stages are modeled using damaged zones in a unified framework. The model is applied to study high cycle fatigue in rolling contacts. The effect of material topological disorder and inhomogeneity on fatigue life dispersion is studied. Fatigue damage is found to originate sub-surface and propagate towards the surface. Sub-surface damage patterns from the model are consistent with experimental observations. Propagation life is found to constitute a significant fraction of total life. Lives are found to follow a 3-parameter Weibull distribution. The relative proportion of lives spent in the initiation and propagation stages are in good quantitative agreement with experiments.

[1]  Qing Chen,et al.  Initiation and propagation of case crushing cracks in rolling contact fatigue , 1988 .

[2]  Grant Hocking,et al.  THE DISCRETE ELEMENT METHOD FOR ANALYSIS OF FRAGMENTATION OF DISCONTINUA , 1992 .

[3]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[4]  T. Siegmund,et al.  An irreversible cohesive zone model for interface fatigue crack growth simulation , 2003 .

[5]  Horacio Dante Espinosa,et al.  A finite deformation continuum\discrete model for the description of fragmentation and damage in brittle materials , 1998 .

[6]  T. A. Harris,et al.  Rolling Bearing Analysis , 1967 .

[7]  C. S. Campbell,et al.  A TWO-DIMENSIONAL DYNAMIC SIMULATION OF SOLID FRACTURE PART I: DESCRIPTION OF THE MODEL , 1995 .

[8]  E. Fuller,et al.  Computer modelling of anisotropic grain microstructure in two dimensions , 1993 .

[9]  Michael A. Stephens,et al.  Estimation and Tests-of-Fit for the Three Parameter Weibull Distribution , 1994 .

[10]  T. A. Harris,et al.  Life ratings for ball and roller bearings , 2001 .

[11]  Michael Ortiz,et al.  A cohesive model of fatigue crack growth , 2001 .

[12]  M. Tabbara,et al.  RANDOM PARTICLE MODEL FOR FRACTURE OF AGGREGATE OR FIBER COMPOSITES , 1990 .

[13]  H. Herrmann,et al.  Statistical models for the fracture of disordered media. North‐Holland, 1990, 353 p., ISBN 0444 88551x (hardbound) US $ 92.25, 0444 885501 (paperback) US $ 41.00 , 1990 .

[14]  A. Otsuka,et al.  A TEST METHOD FOR MODE II FATIGUE CRACK GROWTH RELATING TO A MODEL FOR ROLLING CONTACT FATIGUE , 1996 .

[15]  William A. Curtin,et al.  Brittle fracture in disordered materials: A spring network model , 1990 .

[16]  P. M. Ku Interdisciplinary Approach to the Lubrication of Concentrated Contacts. NASA SP-237 , 1970 .

[17]  J. Bolander,et al.  Fracture analyses using spring networks with random geometry , 1998 .

[18]  Shusuo Li,et al.  A continuum damage mechanics model for high cycle fatigue , 1998 .

[19]  Huang Xingyuan,et al.  A Method of Detecting Rolling Contact Crack Initiation and the Establishment of Crack Propagation Curves , 1988 .

[20]  H. Espinosa,et al.  A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation , 2003 .

[21]  A. Jagota,et al.  Spring-network and finite-element models for elasticity and fracture , 1994 .

[22]  Roux,et al.  Fracture of disordered, elastic lattices in two dimensions. , 1989, Physical review. B, Condensed matter.

[23]  A. Palmgren,et al.  Dynamic capacity of rolling bearings , 1947 .

[24]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[25]  E. Garboczi,et al.  New method for simulating fracture using an elastically uniform random geometry lattice , 1996 .

[26]  L. B. Freund,et al.  Modeling and Simulation of Dynamic Fragmentation in Brittle Materials , 1999 .

[27]  Gang Li,et al.  A simple two-dimensional model for crack propagation , 1989 .

[28]  Farshid Sadeghi,et al.  A discrete element approach to evaluate stresses due to line loading on an elastic half-space , 2007 .

[29]  Mark A. Hopkins,et al.  Numerical Simulation of Systems of Multitudinous Polygonal Blocks , 1992 .

[30]  T. Yoshioka,et al.  Detection of rolling contact sub-surface fatigue cracks using acoustic emission technique , 1993 .

[31]  Jenny Andersson,et al.  The influence of grain size variation on metal fatigue , 2005 .

[32]  Tadahiko Kawai,et al.  New discrete models and their application to seismic response analysis of structures , 1978 .

[33]  R. Fougères,et al.  Role of inclusions, surface roughness and operating conditions on rolling contact fatigue , 1999 .

[34]  Farshid Sadeghi,et al.  A Numerical Model for Life Scatter in Rolling Element Bearings , 2008 .

[35]  Jean Lemaitre,et al.  A two scale damage concept applied to fatigue , 1999 .

[36]  Horacio Dante Espinosa,et al.  Grain level analysis of crack initiation and propagation in brittle materials , 2001 .

[37]  V. V. Bolotin,et al.  Early fatigue crack growth as the damage accumulation process , 2001 .

[38]  Paul A. Wawrzynek,et al.  Simulation of Grain Boundary Decohesion and Crack Initiation in Aluminum Microstructure Models , 2003 .

[39]  Chen Qing,et al.  Study on initiation and propagation angles of subsurface cracks in GCr15 bearing steel under rolling contact , 1989 .

[40]  A. de-Andrés,et al.  Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading , 1999 .

[41]  Jean-Louis Chaboche,et al.  A NON‐LINEAR CONTINUOUS FATIGUE DAMAGE MODEL , 1988 .

[42]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[43]  Ying-Cheng Lai,et al.  Prediction of scatter in fatigue properties using discrete damage mechanics , 2006 .

[44]  V. V. Bolotin Mechanics of Fatigue , 1999 .

[45]  Xiaopeng Xu,et al.  Numerical simulations of dynamic interfacial crack growth allowing for crack growth away from the bond line , 1996 .