Aerodynamic Shape Optimization for Natural Laminar Flow Using a Discrete-Adjoint Approach

A framework for the design of natural-laminar-flow airfoils is developed based on multipoint aerodynamic shape optimization capable of efficiently incorporating and exploiting laminar–turbulent transition. A two-dimensional Reynolds–averaged Navier–Stokes flow solver making use of the Spalart–Allmaras turbulence model is extended to incorporate an iterative laminar–turbulent transition prediction methodology. The natural transition locations due to Tollmien–Schlichting instabilities are predicted using a simplified eN method or the compressible form of the Arnal–Habiballah–Delcourt criterion. The Reynolds–averaged Navier–Stokes solver is subsequently used in a gradient-based sequential quadratic programming shape optimization framework. The transition criteria are tightly coupled into the objective and gradient evaluations. The gradients are obtained using an augmented discrete-adjoint formulation for nonlocal transition criteria. Robust design over a range of cruise flight conditions is demonstrated thro...

[1]  Roddam Narasimha,et al.  Some properties of boundary layer flow during the transition from laminar to turbulent motion , 1958, Journal of Fluid Mechanics.

[2]  D. M. Somers,et al.  Design and experimental results for a flapped natural-laminar-flow airfoil for general aviation applications , 1981 .

[3]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[4]  M. Giles,et al.  Viscous-inviscid analysis of transonic and low Reynolds number airfoils , 1986 .

[5]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[6]  Simha S. Dodbele,et al.  Design optimization of natural laminar flow bodies in compressible flow , 1992 .

[7]  E. Bradford,et al.  A Method for the Constrained Design of Natural Laminar Flow Airfoils , 1996 .

[8]  George Trapp,et al.  Using Complex Variables to Estimate Derivatives of Real Functions , 1998, SIAM Rev..

[9]  Srinath V. Ekkad,et al.  Modeling and Computation of Boundary-Layer Flows , 1998 .

[10]  A. Jameson,et al.  Optimum Aerodynamic Design Using the Navier–Stokes Equations , 1997 .

[11]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[12]  T. Papanastasiou,et al.  Viscous Fluid Flow , 1999 .

[13]  H. Stock,et al.  Navier-Stokes Airfoil Computations with e Transition Prediction Including Transitional Flow Regions , 2000 .

[14]  C. P. van Dam,et al.  Transition prediction for a two‐dimensional reynolds‐averaged navier–stokes method applied to wind turbine airfoils , 2001 .

[15]  Joaquim R. R. A. Martins,et al.  THE CONNECTION BETWEEN THE COMPLEX-STEP DERIVATIVE APPROXIMATION AND ALGORITHMIC DIFFERENTIATION , 2001 .

[16]  Ashok Gopalarathnam,et al.  Design of Low Reynolds Number Airfoils with Trips , 2001 .

[17]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[18]  T. Pulliam,et al.  Multipoint and Multi-Objective Aerodynamic Shape Optimization , 2002 .

[19]  D. Zingg,et al.  Newton-Krylov Algorithm for Aerodynamic Design Using the Navier-Stokes Equations , 2002 .

[20]  Jan O. Pralits,et al.  Optimal Design of Natural and Hybrid Laminar Flow Control on Wings , 2003 .

[21]  Peter Sturdza,et al.  An aerodynamic design method for supersonic natural laminar flow aircraft , 2003 .

[22]  Michimasa Fujino,et al.  Natural-Laminar-Flow Airfoil Development for a Lightweight Business Jet , 2003 .

[23]  A. Krumbein On Modeling of Transitional Flow and its Application on a High Lift Multi-element Airfoil Configuration , 2003 .

[24]  Ilan Kroo,et al.  Design-Oriented Aerodynamic Analysis for Supersonic Laminar Flow Wings , 2003 .

[25]  Andreas Krumbein,et al.  On Modeling of Transitional Flow and its Application on a High Lift Multi-element Airfoil Configuration , 2003 .

[26]  Rolf Radespiel,et al.  Transition Prediction for 3D Flows Using a Reynolds-Averaged Navier-Stokes Code and N-Factor Methods , 2003 .

[27]  H. Stock,et al.  Crossflow Induced Transition Prediction Using Coupled Navier-Stokes eN Method Computations , 2004 .

[28]  Andreas Krumbein Automatic Transition Prediction and Application to High-Lift Multi-Element Configurations , 2004 .

[29]  Rolf Radespiel,et al.  Numerical Aspects of Transition Prediction for Three- Dimensional Configurations , 2005 .

[30]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..

[31]  F. Menter,et al.  Transition Modeling for General CFD Applications in Aeronautics , 2005 .

[32]  D. Henningson,et al.  Shape Optimization for Delay of Laminar-Turbulent Transition , 2006 .

[33]  E. Mayda Boundary-layer transition prediction for Reynolds -averaged Navier -Stokes methods , 2007 .

[34]  Peter Sturdza,et al.  Extensive Supersonic Natural Laminar Flow on the Aerion Business Jet , 2007 .

[35]  David W. Zingg,et al.  Numerical aerodynamic optimization incorporating laminar-turbulent transition prediction , 2007 .

[36]  Andreas Krumbein,et al.  Transition Prediction and Impact on a Three-Dimensional High-Lift-Wing Configuration , 2008 .

[37]  Andreas Krumbein,et al.  eN transition prediction for 3D wing configurations using database methods and a local, linear stability code , 2008 .

[38]  William S. Saric,et al.  Transition Mechanisms for Transport Aircraft , 2008 .

[39]  R. Houdeville,et al.  Application of Laminar-Turbulent Transition Criteria in Navier-Stokes Computations , 2008 .

[40]  N. Krimmelbein,et al.  Transition prediction for three-dimensional flows using parallel computation , 2009 .

[41]  Antony Jameson,et al.  Natural-Laminar-Flow Airfoil and Wing Design by Adjoint Method and Automatic Transition Prediction , 2009 .

[42]  David W. Zingg,et al.  A perspective on turbulence models for aerodynamic flows , 2009 .

[43]  Andreas Krumbein,et al.  Automatic Transition Prediction in Hybrid Flow Solver, Part 1: Methodology and Sensitivities , 2009 .

[44]  Florian R. Menter,et al.  Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes , 2009 .

[45]  Beckett Yx Zhou,et al.  Airfoil Optimization Using Practical Aerodynamic Design Requirements , 2010 .

[46]  Richard L. Campbell,et al.  Progress Toward Efficient Laminar Flow Analysis and Design , 2011 .

[47]  R. Houdeville,et al.  Overview of laminar-turbulent transition investigations at ONERA Toulouse , 2011 .

[48]  James D. Baeder,et al.  Application of the Correlation-based Gamma-Re Theta t Transition Model to the Spalart-Allmaras Turbulence Model , 2011 .

[49]  Daniel J. Inman,et al.  A Review of Morphing Aircraft , 2011 .

[50]  S. Nadarajah,et al.  Aerodynamic Shape Optimization via Discrete Viscous Adjoint Equations for the k-wSST Turbulence and y-Re0 Transition Models , 2011 .

[51]  L. Cameron,et al.  Metamodel Assisted Multi-Objective Global Optimisation of Natural Laminar Flow Aerofoils , 2011 .

[52]  Stefan Hein,et al.  Complementary Numerical and Experimental Data Analysis of the ETW Telfona Pathfinder Wing Transition Tests , 2011 .

[53]  Karthik Duraisamy,et al.  Assessment of Transition Model and CFD Methodology for Wind Turbine Flows , 2012 .

[54]  S. Nadarajah,et al.  Aerodynamic Shape Optimization of Natural Laminar Flow (NLF) Airfoils , 2012 .

[55]  Florian Linke,et al.  Mission and Economic Analysis of Aircraft with Natural Laminar Flow , 2012 .

[56]  J. Oldham A turbulent transition. , 2013, Journal of psychiatric practice.

[57]  Ramy Rashad,et al.  High-Fidelity Aerodynamic Shape Optimization for Natural Laminar Flow , 2016 .

[58]  Ke Zhao,et al.  Robust design of NLF airfoils , 2013 .

[59]  David W. Zingg,et al.  Approach to Aerodynamic Design Through Numerical Optimization , 2013 .

[60]  James G. Coder,et al.  A CFD-Compatible Transition Model Using an Amplification Factor Transport Equation , 2013 .

[61]  Ilan Kroo,et al.  Aircraft Design with Active Load Alleviation and Natural Laminar Flow , 2014 .

[62]  Siva Nadarajah,et al.  Laminar‐turbulent flow simulation for wind turbine profiles using the γ–Re˜θt transition model , 2014 .

[63]  Niels N. Sørensen,et al.  Design of the LRP airfoil series using 2D CFD , 2014 .

[64]  Ke Zhao,et al.  Robust design of natural laminar flow supercritical airfoil by multi-objective evolution method , 2014 .

[65]  R. Langtry Extending the Gamma-Rethetat Correlation based Transition Model for Crossflow Effects (Invited) , 2015 .

[66]  Eric Laurendeau,et al.  Design of adaptive transonic laminar airfoils using the γ-Re˜θt transition model , 2015 .

[67]  N. Krimmelbein,et al.  Development and Application of Transition Prediction Techniques in an Unstructured CFD Code , 2015 .

[68]  Jinsheng Cai,et al.  Airfoil Optimization Based on Rapid Transition Prediction , 2015 .

[69]  R. C. Swanson,et al.  On Central-Difference and Upwind Schemes , 1992 .