Periodic motion detection and segmentation via approximate sequence alignment

A method for detecting and segmenting periodic motion is presented. We exploit periodicity as a cue and detect periodic motion in complex scenes where common methods for motion segmentation are likely to fail. We note that periodic motion detection can be seen as an approximate case of sequence alignment where an image sequence is matched to itself over one or more periods of time. To use this observation, we first consider alignment of two video sequences obtained by independently moving cameras. Under assumption of constant translation, the fundamental matrices and the homographies are shown to be time-linear matrix functions. These dynamic quantities can be estimated by matching corresponding space-time points with similar local motion and shape. For periodic motion, we match corresponding points across periods and develop a RANSAC procedure to simultaneously estimate the period and the dynamic geometric transformations between periodic views. Using this method, we demonstrate detection and segmentation of human periodic motion in complex scenes with nonrigid backgrounds, moving camera and motion parallax.

[1]  Jing Xiao,et al.  A Closed-Form Solution to Non-rigid Shape and Motion Recovery , 2004, ECCV.

[2]  P. Torr Geometric motion segmentation and model selection , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  Ivan Laptev,et al.  Galilean-diagonalized spatio-temporal interest operators , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[4]  Ivan Laptev,et al.  On Space-Time Interest Points , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[5]  Ian D. Reid,et al.  Synchronizing Image Sequences of Non-Rigid Objects , 2003, BMVC.

[6]  Edward H. Adelson,et al.  Layered representation for motion analysis , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[7]  René Vidal,et al.  A Unified Algebraic Approach to 2-D and 3-D Motion Segmentation , 2004, ECCV.

[8]  Yanxi Liu,et al.  Gait Sequence Analysis Using Frieze Patterns , 2002, ECCV.

[9]  Marisa E. Campbell,et al.  SIGGRAPH 2004 , 2004, INTR.

[10]  Steven M. Seitz,et al.  View-Invariant Analysis of Cyclic Motion , 1997, International Journal of Computer Vision.

[11]  Kiriakos N. Kutulakos,et al.  Linear sequence-to-sequence alignment , 2004, CVPR 2004.

[12]  Alex Pentland,et al.  Segmentation by minimal description , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[13]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[14]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[15]  Kiriakos N. Kutulakos,et al.  Linear Sequence-to-Sequence Alignment , 2004, CVPR.

[16]  Rama Chellappa,et al.  Motion-model-based boundary extraction , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[17]  Vladimir Kolmogorov,et al.  Multi-camera Scene Reconstruction via Graph Cuts , 2002, ECCV.

[18]  Prosenjit Bose,et al.  Temporal Synchronization of Video Sequences in Theory and in Practice , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[19]  Jean-Marc Odobez,et al.  Robust Multiresolution Estimation of Parametric Motion Models , 1995, J. Vis. Commun. Image Represent..

[20]  Barbara Caputo,et al.  Recognizing human actions: a local SVM approach , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[21]  Randal C. Nelson,et al.  Detection and Recognition of Periodic, Nonrigid Motion , 1997, International Journal of Computer Vision.

[22]  Stan Sclaroff,et al.  Periodic Motion Detection and Estimation via Space-Time Sampling , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[23]  Ivan Laptev,et al.  Local Descriptors for Spatio-temporal Recognition , 2004, SCVMA.

[24]  Tinne Tuytelaars,et al.  Synchronizing video sequences , 2004, CVPR 2004.

[25]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[26]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  M. Irani,et al.  Spatio-Temporal Alignment of Sequences , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Aaron Hertzmann,et al.  Learning Non-Rigid 3D Shape from 2D Motion , 2003, NIPS.

[29]  Tanveer F. Syeda-Mahmood,et al.  View-invariant alignment and matching of video sequences , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[30]  Serge J. Belongie,et al.  Structure from Periodic Motion , 2004, SCVMA.