Misspecified Structural Change, Threshold, and Markov-switching models

Sudden perturbations of a large amplitude occur frequently in macroeconomic and financial time series. A usual practice is to test linearity against a permanent structural change. However, changes can also be captured by nonlinear stationary models such that Threshold and Markov-switching models. In this paper, we show that tests designed for a threshold alternative have also power against parameter instability originating from Structural Change or Markov-switching models. On the other hand, it is shown that tests for structural change have no power if the data are generated by a Markov-switching or Threshold model. Therefore, it appears that testing the null of parameter stability against a threshold alternative is a robust way to detect parameter instability in economic and financial time series. A Monte Carlo analysis based on several models studied in the literature illustrates how the tests perform in practice.

[1]  Donald W. K. Andrews,et al.  Admissibility of the Likelihood Ratio Test When a Nuisance Parameter is Present Only Under the Alternative , 1995 .

[2]  C. Gouriéroux ARCH Models and Financial Applications , 1997 .

[3]  P. Doukhan Mixing: Properties and Examples , 1994 .

[4]  Simon M. Potter A Nonlinear Approach to US GNP , 1995 .

[5]  H. Tong,et al.  On the use of the deterministic Lyapunov function for the ergodicity of stochastic difference equations , 1985, Advances in Applied Probability.

[6]  R. Bhattacharya,et al.  On geometric ergodicity of nonlinear autoregressive models , 1995 .

[7]  Allan Timmermann,et al.  Moments of Markov switching models , 2000 .

[8]  R. Davies Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .

[9]  J. Stock,et al.  Evidence on Structural Instability in Macroeconomic Time Series Relations , 1994 .

[10]  Bruce E. Hansen,et al.  Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .

[11]  Robert W. Rich,et al.  Oil and the Macroeconomy: A Markov State-Switching Approach , 1997 .

[12]  Jianfeng Yao,et al.  On stability of nonlinear AR processes with Markov switching , 2000, Advances in Applied Probability.

[13]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[14]  P. Perron,et al.  Testing For A Unit Root In A Time Series With A Changing Mean , 1990 .

[15]  Jean-Francois Richard,et al.  The Encompassing Principle and Its Application to Testing Non-nested Hypotheses , 1986 .

[16]  H. Müller CHANGE-POINTS IN NONPARAMETRIC REGRESSION ANALYSIS' , 1992 .

[17]  K. Chan,et al.  Testing for threshold autoregression , 1990 .

[18]  James D. Hamilton Specification testing in Markov-switching time-series models , 1996 .

[19]  H. White,et al.  A Unified Theory of Estimation and Inference for Nonlinear Dynamic Models , 1988 .

[20]  René Garcia,et al.  Série Scientifique Scientific Series an Analysis of the Real Interest Rate under Regime Shifts , 2022 .

[21]  James D. Hamilton Time Series Analysis , 1994 .

[22]  H. D. Miller,et al.  The Theory Of Stochastic Processes , 1977, The Mathematical Gazette.

[23]  R. Ramanathan,et al.  Introductory Econometrics With Applications , 1989 .

[24]  D. Andrews,et al.  Optimal Tests When a Nuisance Parameter Is Present Only Under the Alternative , 1992 .

[25]  Howell Tong,et al.  Non-Linear Time Series , 1990 .

[26]  Gary Koop,et al.  Are Apparent Findings of Nonlinearity Due to Structural Instability in Economic Time Series , 2001 .

[27]  James D. Hamilton 9 Estimation, inference and forecasting of time series subject to changes in regime , 1993 .

[28]  D. Andrews Tests for Parameter Instability and Structural Change with Unknown Change Point , 1993 .

[29]  James D. Hamilton,et al.  Autoregressive conditional heteroskedasticity and changes in regime , 1994 .

[30]  G. Kaminsky Is There a Peso Problem? Evidence from the Dollar/Pound Exchange Rate, 1976-1987 , 1993 .

[31]  Alain Monfort,et al.  Testing nested or non-nested hypotheses , 1983 .

[32]  Lung-fei Lee,et al.  Specification testing when score test statistics are identically zero , 1986 .

[33]  J. Stock,et al.  Recursive and Sequential Tests of the Unit Root and Trend Break Hypothesis: Theory and International Evidence , 1990 .

[34]  J. Zakoian,et al.  Stationarity of Multivariate Markov-Switching ARMA Models , 2001 .

[35]  Gary Koop,et al.  Bayes factors and nonlinearity: Evidence from economic time series , 1999 .

[36]  Robert V. Foutz,et al.  The Performance of the Likelihood Ratio Test When the Model is Incorrect , 1977 .

[37]  René Garcia,et al.  Série Scientifique Scientific Series Nº 95s-7 Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models , 2022 .

[38]  Kung-Sik Chan,et al.  On Likelihood Ratio Tests for Threshold Autoregression , 1990 .

[39]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[40]  Christian Gourieroux,et al.  Statistique et modèles économétriques , 1989 .

[41]  B. Hansen,et al.  Inference in TAR Models , 1997 .

[42]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[43]  Dawei Huang,et al.  Testing for a Change in the Parameter Values and Order of an Autoregressive Model , 1995 .