Optoelectronic reservoir computing: tackling noise-induced performance degradation.

We present improved strategies to perform photonic information processing using an optoelectronic oscillator with delayed feedback. In particular, we study, via numerical simulations and experiments, the influence of a finite signal-to-noise ratio on the computing performance. We illustrate that the performance degradation induced by noise can be compensated for via multi-level pre-processing masks.

[1]  Bing J. Sheu,et al.  Photonic Neural Networks , 1995 .

[2]  Benjamin Schrauwen,et al.  Optoelectronic Reservoir Computing , 2011, Scientific Reports.

[3]  Gilles Laurent,et al.  Transient Dynamics for Neural Processing , 2008, Science.

[4]  H. John,et al.  Why future supercomputing requires optics , 2010 .

[5]  Hübner,et al.  Dimensions and entropies of chaotic intensity pulsations in a single-mode far-infrared NH3 laser. , 1989, Physical review. A, General physics.

[6]  Sudeshna Sinha,et al.  Introduction to focus issue: intrinsic and designed computation: information processing in dynamical systems--beyond the digital hegemony. , 2010, Chaos.

[7]  K. Ikeda Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system , 1979 .

[8]  Andreas S. Weigend,et al.  Time Series Prediction: Forecasting the Future and Understanding the Past , 1994 .

[9]  Laurent Larger,et al.  Distinguishing fingerprints of hyperchaotic and stochastic dynamics in optical chaos from a delayed opto-electronic oscillator. , 2011, Optics letters.

[10]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[11]  L. Appeltant,et al.  Information processing using a single dynamical node as complex system , 2011, Nature communications.

[12]  Benjamin Schrauwen,et al.  An experimental unification of reservoir computing methods , 2007, Neural Networks.

[13]  Henry Markram,et al.  On the computational power of circuits of spiking neurons , 2004, J. Comput. Syst. Sci..

[14]  L Pesquera,et al.  Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. , 2012, Optics express.

[15]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[16]  Benjamin Schrauwen,et al.  Toward optical signal processing using photonic reservoir computing. , 2008, Optics express.

[17]  Lijuan Cao,et al.  Support vector machines experts for time series forecasting , 2003, Neurocomputing.

[18]  Benjamin Schrauwen,et al.  Parallel Reservoir Computing Using Optical Amplifiers , 2011, IEEE Transactions on Neural Networks.

[19]  Laurent Larger,et al.  Photonic nonlinear transient computing with multiple-delay wavelength dynamics. , 2012, Physical review letters.

[20]  Laurent Larger,et al.  Ikeda-based nonlinear delayed dynamics for application to secure optical transmission systems using chaos , 2004 .

[21]  Laurent Larger,et al.  Chaotic oscillator in wavelength: a new setup for investigating differential difference equations describing nonlinear dynamics , 1998 .

[22]  H. John Caulfield,et al.  Why future supercomputing requires optics , 2010 .

[23]  Peter Tiño,et al.  Minimum Complexity Echo State Network , 2011, IEEE Transactions on Neural Networks.

[24]  Enrico Rubiola,et al.  Dynamic instabilities of microwaves generated with optoelectronic oscillators. , 2007, Optics letters.

[25]  J. O'Brien Optical Quantum Computing , 2007, Science.

[26]  Thomas J. Naughton,et al.  Photonic neural networks , 2012, Nature Physics.

[27]  Henry Markram,et al.  On the Computational Power of Recurrent Circuits of Spiking Neurons , 2002, Electron. Colloquium Comput. Complex..

[28]  Benjamin Schrauwen,et al.  Information Processing Capacity of Dynamical Systems , 2012, Scientific Reports.