Sufficient Conditions for Fast Switching Synchronization in Time-Varying Network Topologies

In previous work [J. D. Skufca and E. Bollt, Mathematical Biosciences and Engineering, 1 (2004), pp. 347-359], empirical evidence indicated that a time-varying network could propagate sufficient in...

[1]  Kunihiko Kaneko,et al.  Spontaneous structure formation in a network of chaotic units with variable connection strengths. , 2002, Physical review letters.

[2]  P. Webster,et al.  Co-occurrence of Northern and Southern Hemisphere Blocks as Partially Synchronized Chaos , 1999 .

[3]  Erik M. Bollt,et al.  Review of Chaos Communication by Feedback Control of Symbolic Dynamics , 2003, Int. J. Bifurc. Chaos.

[4]  Vijay Kumar,et al.  Modeling and control of formations of nonholonomic mobile robots , 2001, IEEE Trans. Robotics Autom..

[5]  Kunihiko Kaneko,et al.  Dynamical networks in function dynamics , 2003 .

[6]  Alexander S. Mikhailov,et al.  Dynamical systems with time-dependent coupling: Clustering and critical behaviour , 2004 .

[7]  Roy,et al.  Experimental synchronization of chaotic lasers. , 1994, Physical review letters.

[8]  Dirk Aeyels,et al.  On exponential stability of nonlinear time-varying differential equations , 1999, Autom..

[9]  M. Hasler,et al.  Connection Graph Stability Method for Synchronized Coupled Chaotic Systems , 2004 .

[10]  M. Sain Finite dimensional linear systems , 1972 .

[11]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[12]  Joseph D Skufca,et al.  Communication and synchronization in, disconnected networks with dynamic topology: moving neighborhood networks. , 2004, Mathematical biosciences and engineering : MBE.

[13]  R. Kosut,et al.  Stability theory for adaptive systems: Methods of averaging and persistency of excitation , 1985, 1985 24th IEEE Conference on Decision and Control.

[14]  M. Hasler,et al.  Blinking model and synchronization in small-world networks with a time-varying coupling , 2004 .

[15]  D. Aeyels,et al.  A new asymptotic stability criterion for nonlinear time-variant differential equations , 1998, IEEE Trans. Autom. Control..

[16]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[17]  Deok-Sun Lee Synchronization transition in scale-free networks: clusters of synchrony. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[19]  D.G. Roberson,et al.  Control of an autonomous underwater vehicle platoon with a switched communication network , 2005, Proceedings of the 2005, American Control Conference, 2005..

[20]  J. Buck,et al.  Synchronous fireflies. , 1976, Scientific American.

[21]  Junji Ohtsubo,et al.  Feedback Induced Instability and Chaos in Semiconductor Lasers and Their Applications , 1999 .

[22]  Chris Arney Sync: The Emerging Science of Spontaneous Order , 2007 .

[23]  Louis M. Pecora,et al.  Synchronization stability in Coupled oscillator Arrays: Solution for Arbitrary Configurations , 2000, Int. J. Bifurc. Chaos.

[24]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[25]  J. Jost,et al.  Spectral properties and synchronization in coupled map lattices. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[27]  Ned J Corron,et al.  Synchronizing the information content of a chaotic map and flow via symbolic dynamics. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[29]  E. Mosekilde,et al.  Chaotic Synchronization: Applications to Living Systems , 2002 .

[30]  Jerzy Tokarzewski,et al.  Stability of periodically switched linear systems and the switching frequency , 1987 .

[31]  L Glass,et al.  Phase-locked rhythms in periodically stimulated heart cell aggregates. , 1988, The American journal of physiology.

[32]  Steven H. Strogatz,et al.  Synchronization: A Universal Concept in Nonlinear Sciences , 2003 .

[33]  Ljupco Kocarev,et al.  Sporadic driving of dynamical systems , 1997 .

[34]  Grebogi,et al.  Communicating with chaos. , 1993, Physical review letters.

[35]  Roberto Conti,et al.  Non-linear differential equations , 1966 .

[36]  M. Rabinovich,et al.  Stochastic synchronization of oscillation in dissipative systems , 1986 .

[37]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[38]  I. Stewart,et al.  Coupled nonlinear oscillators and the symmetries of animal gaits , 1993 .

[39]  Ljupco Kocarev,et al.  Applications of symbolic dynamics in chaos synchronization , 1997 .

[40]  César A. Hidalgo,et al.  Scale-free networks , 2008, Scholarpedia.

[41]  Adilson E Motter,et al.  Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? , 2003, Physical review letters.

[42]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[43]  Arkady Pikovsky,et al.  A universal concept in nonlinear sciences , 2006 .

[44]  Johnson,et al.  Three coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  Ilʹi︠a︡ Izrailevich Blekhman,et al.  Synchronization in science and technology , 1988 .

[46]  Semyon M. Meerkov,et al.  STABILITY OF FAST PERIODIC SYSTEMS. , 1984 .

[47]  Beom Jun Kim,et al.  Synchronization on small-world networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[49]  Sarika Jalan,et al.  Self-organized and driven phase synchronization in coupled map scale free networks , 2002 .

[50]  S. Schiff,et al.  Decreased Neuronal Synchronization during Experimental Seizures , 2002, The Journal of Neuroscience.

[51]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[52]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[53]  October I Physical Review Letters , 2022 .

[54]  Michael C. Mackey,et al.  From Clocks to Chaos , 1988 .

[55]  Shouchuan Hu Differential equations with discontinuous right-hand sides☆ , 1991 .

[56]  Duncan J. Watts,et al.  Six Degrees: The Science of a Connected Age , 2003 .

[57]  Raymond A. DeCarlo,et al.  Switched Controller Synthesis for the Quadratic Stabilisation of a Pair of Unstable Linear Systems , 1998, Eur. J. Control.

[58]  J Honerkamp,et al.  The heart as a system of coupled nonlinear oscillators , 1983, Journal of mathematical biology.

[59]  M G Cosenza,et al.  Coupled map networks as communication schemes. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  Roy,et al.  Communication with chaotic lasers , 1998, Science.

[61]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[62]  Richard M. Murray,et al.  INFORMATION FLOW AND COOPERATIVE CONTROL OF VEHICLE FORMATIONS , 2002 .

[63]  Ned J Corron,et al.  Information flow in chaos synchronization: fundamental tradeoffs in precision, delay, and anticipation. , 2003, Physical review letters.