Electrophysiology in the age of light

Electrophysiology, the 'gold standard' for investigating neuronal signalling, is being challenged by a new generation of optical probes. Together with new forms of microscopy, these probes allow us to measure and control neuronal signals with spatial resolution and genetic specificity that already greatly surpass those of electrophysiology. We predict that the photon will progressively replace the electron for probing neuronal function, particularly for targeted stimulation and silencing of neuronal populations. Although electrophysiological characterization of channels, cells and neural circuits will remain necessary, new combinations of electrophysiology and imaging should lead to transformational discoveries in neuroscience.

[1]  A. Hodgkin,et al.  Action Potentials Recorded from Inside a Nerve Fibre , 1939, Nature.

[2]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[3]  Luigi Galvani,et al.  De viribus electricitatis in motu musculari , 1967 .

[4]  C. Stevens,et al.  Voltage clamp analysis of acetylcholine produced end‐plate current fluctuations at frog neuromuscular junction , 1973, The Journal of physiology.

[5]  B. Sakmann,et al.  Single-channel currents recorded from membrane of denervated frog muscle fibres , 1976, Nature.

[6]  D. Senseman,et al.  Optical recording of action potentials from vertebrate nerve terminals using potentiometric probes provides evidence for sodium and calcium components , 1983, Nature.

[7]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[8]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[9]  D. Kleinfeld,et al.  Noninvasive detection of changes in membrane potential in cultured neurons by light scattering. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[11]  W. Betz,et al.  Imaging exocytosis and endocytosis , 1996, Current Opinion in Neurobiology.

[12]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[13]  K. Svoboda,et al.  Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick , 1997, Neuron.

[14]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[15]  Ehud Y Isacoff,et al.  A Genetically Encoded Optical Probe of Membrane Voltage , 1997, Neuron.

[16]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[17]  W. Denk,et al.  Mechanisms of Calcium Influx into Hippocampal Spines: Heterogeneity among Spines, Coincidence Detection by NMDA Receptors, and Optical Quantal Analysis , 1999, The Journal of Neuroscience.

[18]  A. Grinvald,et al.  Linking spontaneous activity of single cortical neurons and the underlying functional architecture. , 1999, Science.

[19]  Francisco Bezanilla,et al.  Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy , 1999, Nature.

[20]  E. Isacoff,et al.  Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel , 1999, Nature.

[21]  Bernardo L. Sabatini,et al.  Analysis of calcium channels in single spines using optical fluctuation analysis , 2000, Nature.

[22]  R. Yuste,et al.  Optical probing of neuronal circuits with calcium indicators. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Yasushi Miyashita,et al.  Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001, Nature Neuroscience.

[24]  D. Tank,et al.  A Miniature Head-Mounted Two-Photon Microscope High-Resolution Brain Imaging in Freely Moving Animals , 2001, Neuron.

[25]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[26]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[27]  Susumu Terakawa,et al.  Structural rearrangements in single ion channels detected optically in living cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Marco Piccolino,et al.  Drawing a spark from darkness: John Walsh and electric fish , 2002, Trends in Neurosciences.

[29]  K. Svoboda,et al.  Structure and function of dendritic spines. , 2002, Annual review of physiology.

[30]  Winfried Denk,et al.  Targeted Whole-Cell Recordings in the Mammalian Brain In Vivo , 2003, Neuron.

[31]  W. Denk,et al.  Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. , 2003, Optics letters.

[32]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[33]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Oliver Griesbeck,et al.  Genetically Encoded Indicators of Cellular Calcium Dynamics Based on Troponin C and Green Fluorescent Protein* , 2004, Journal of Biological Chemistry.

[36]  Massimo Scanziani,et al.  Routing of spike series by dynamic circuits in the hippocampus , 2004, Nature.

[37]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[38]  Jack W. Judy,et al.  An ultra small array of electrodes for stimulating multiple inputs into a single neuron , 2004, Journal of Neuroscience Methods.

[39]  Wei R Chen,et al.  Voltage Imaging from Dendrites of Mitral Cells: EPSP Attenuation and Spike Trigger Zones , 2004, The Journal of Neuroscience.

[40]  Lawrence C Katz,et al.  High-Resolution In Vivo Imaging of Hippocampal Dendrites and Spines , 2004, The Journal of Neuroscience.

[41]  Daniel A Dombeck,et al.  Optical Recording of Action Potentials with Second-Harmonic Generation Microscopy , 2004, The Journal of Neuroscience.

[42]  Amiram Grinvald,et al.  VSDI: a new era in functional imaging of cortical dynamics , 2004, Nature Reviews Neuroscience.

[43]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[44]  R. Ruoff,et al.  Fabrication of nanoelectrodes for neurophysiology: cathodic electrophoretic paint insulation and focused ion beam milling , 2005, Nanotechnology.

[45]  Francisco Bezanilla,et al.  A hybrid approach to measuring electrical activity in genetically specified neurons , 2005, Nature Neuroscience.

[46]  E. Callaway,et al.  Excitatory cortical neurons form fine-scale functional networks , 2005, Nature.

[47]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[48]  L. Looger,et al.  Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Susana Q. Lima,et al.  Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons , 2005, Cell.

[50]  Cees Dekker,et al.  Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. , 2005, Nano letters.

[51]  Pere Garriga,et al.  Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops. , 2005, Biochemistry.

[52]  H. Chiel,et al.  Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Rafael Yuste,et al.  Reverse optical probing (ROPING) of neocortical circuits , 2006, Synapse.

[54]  Albert K. Lee,et al.  Whole-Cell Recordings in Freely Moving Rats , 2006, Neuron.

[55]  Cees Dekker,et al.  Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. , 2006, Nano letters.

[56]  Rafael Yuste,et al.  Imaging membrane potential in dendritic spines. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[57]  C. Petersen,et al.  Visualizing the Cortical Representation of Whisker Touch: Voltage-Sensitive Dye Imaging in Freely Moving Mice , 2006, Neuron.

[58]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[59]  Mark Mayford,et al.  Localization of a Stable Neural Correlate of Associative Memory , 2007, Science.

[60]  Victor H Hernandez,et al.  Nature Methods , 2007 .

[61]  Thomas K. Berger,et al.  Combined voltage and calcium epifluorescence imaging in vitro and in vivo reveals subthreshold and suprathreshold dynamics of mouse barrel cortex. , 2007, Journal of neurophysiology.

[62]  D. Tank,et al.  Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice , 2007, Neuron.

[63]  Herwig Baier,et al.  Remote Control of Neuronal Activity with a Light-Gated Glutamate Receptor , 2007, Neuron.

[64]  Lucas Sjulson,et al.  Optical recording of action potentials and other discrete physiological events: a perspective from signal detection theory. , 2007, Physiology.

[65]  F. Helmchen,et al.  Imaging cellular network dynamics in three dimensions using fast 3D laser scanning , 2007, Nature Methods.

[66]  Byron M. Yu,et al.  Techniques for extracting single-trial activity patterns from large-scale neural recordings , 2007, Current Opinion in Neurobiology.

[67]  K. Deisseroth,et al.  Circuit-breakers: optical technologies for probing neural signals and systems , 2007, Nature Reviews Neuroscience.

[68]  E. Boyden,et al.  Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution , 2007, PloS one.

[69]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[70]  T. Tsumoto,et al.  GABAergic Neurons Are Less Selective to Stimulus Orientation than Excitatory Neurons in Layer II/III of Visual Cortex, as Revealed by In Vivo Functional Ca2+ Imaging in Transgenic Mice , 2007, The Journal of Neuroscience.

[71]  K. Deisseroth,et al.  optical technologies for probing neural signals and systems , 2007 .

[72]  Junichi Nakai,et al.  Characterization and Subcellular Targeting of GCaMP-Type Genetically-Encoded Calcium Indicators , 2008, PloS one.

[73]  R. Tsien,et al.  Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters , 2008, Proceedings of the National Academy of Sciences.

[74]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[75]  K. Deisseroth,et al.  Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri , 2008, Nature Neuroscience.

[76]  David S. Greenberg,et al.  Population imaging of ongoing neuronal activity in the visual cortex of awake rats , 2008, Nature Neuroscience.

[77]  W. Denk,et al.  Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo , 2008, Nature Methods.

[78]  Laurie D. Burns,et al.  High-speed, miniaturized fluorescence microscopy in freely moving mice , 2008, Nature Methods.

[79]  Judit K. Makara,et al.  Compartmentalized dendritic plasticity and input feature storage in neurons , 2008, Nature.

[80]  M. Mank,et al.  Genetically encoded calcium indicators. , 2008, Chemical reviews.

[81]  A. Borst,et al.  A genetically encoded calcium indicator for chronic in vivo two-photon imaging , 2008, Nature Methods.

[82]  Damian J. Wallace,et al.  Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor , 2008, Nature Methods.

[83]  K. Svoboda,et al.  Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice , 2008, Nature.

[84]  Keith J. Kelleher,et al.  Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity , 2008, Nature Neuroscience.

[85]  E. Miller,et al.  All My Circuits: Using Multiple Electrodes to Understand Functioning Neural Networks , 2008, Neuron.

[86]  Kevin L. Briggman,et al.  3D structural imaging of the brain with photons and electrons , 2008, Current Opinion in Neurobiology.

[87]  Hari Shroff,et al.  Advances in the speed and resolution of light microscopy , 2008, Current Opinion in Neurobiology.

[88]  David A. DiGregorio,et al.  Submillisecond Optical Reporting of Membrane Potential In Situ Using a Neuronal Tracer Dye , 2009, The Journal of Neuroscience.

[89]  M. Carandini,et al.  Local Origin of Field Potentials in Visual Cortex , 2009, Neuron.

[90]  Walther Akemann,et al.  Effect of voltage sensitive fluorescent proteins on neuronal excitability. , 2009, Biophysical journal.

[91]  Brendon O. Watson,et al.  Spike inference from calcium imaging using sequential Monte Carlo methods. , 2009, Biophysical journal.

[92]  Kunal K. Ghosh,et al.  Advances in light microscopy for neuroscience. , 2009, Annual review of neuroscience.

[93]  Johann H. Bollmann,et al.  Subcellular Topography of Visually Driven Dendritic Activity in the Vertebrate Visual System , 2009, Neuron.

[94]  K. Deisseroth,et al.  Bi-stable neural state switches , 2009, Nature Neuroscience.

[95]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[96]  G. Stuart,et al.  Membrane Potential Changes in Dendritic Spines during Action Potentials and Synaptic Input , 2009, The Journal of Neuroscience.

[97]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[98]  Raag D. Airan,et al.  Temporally precise in vivo control of intracellular signalling , 2009, Nature.

[99]  Li I. Zhang,et al.  Visual Receptive Field Structure of Cortical Inhibitory Neurons Revealed by Two-Photon Imaging Guided Recording , 2009, The Journal of Neuroscience.

[100]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[101]  K. Deisseroth,et al.  Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning , 2009, Science.