The Effect of an Upstream Ramp on Cylindrical and Fan-Shaped Hole Film Cooling: Part II — Adiabatic Effectiveness Results

The present companion papers report the results of an experimental investigation on possible beneficial effects of an upstream ramp on discrete hole film cooling. This analysis was carried out on a flat plate model. Two hole geometries have been considered: cylindrical and fan-shaped with conical expanded exit. To compare different cooling schemes, a combined aero-thermal analysis was performed. Tests have been carried out at low speed and low inlet turbulence intensity level, with blowing ratios varied in the range 0.3–1.0. Part I was focused on the aerodynamic analysis: it has been shown that the introduction of a ramp is always detrimental, as it gives a strong loss increase (+5%). Fan-shaped hole was instead the best solution, as it gives losses comparable with the cylindrical one, reduced turbulence mixing and jet dilution. Part II of this paper faces the thermal analysis. The thermal behaviour of the cooled surface has been analysed using the wide banded TLC’s technique, so to obtain adiabatic effectiveness distributions. Additional air temperature measurements have been carried out by traversing a thermocouple downstream of injection holes. The upstream ramp was found to provide a thermal protection improvement (+40%) only at low blowing rate in the case of cylindrical hole. The application of a ramp upstream of a fanshaped hole was instead detrimental for all blowing conditions. The fan shaped hole geometry with no ramp resulted to be the best solution also in terms of adiabatic effectiveness (50% higher than the cylindrical one at BR = 0.5).Copyright © 2007 by ASME