Expression of the Citrus sinensis EDS5 gene, MATE family, in Solanum lycopersicum L. cv. Micro-Tom enhances resistance to tomato spot disease

[1]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[2]  D. Kar,et al.  A Multidrug and Toxic compound Extrusion (MATE) transporter modulates auxin levels in root to regulate root development and promotes aluminium tolerance. , 2020, Plant, cell & environment.

[3]  E. De Pauw,et al.  Intertwined metal homeostasis, oxidative and biotic stress responses in the Arabidopsis frd3 mutant. , 2019, The Plant journal : for cell and molecular biology.

[4]  E. Ruelland,et al.  Salicylic Acid Binding Proteins (SABPs): The Hidden Forefront of Salicylic Acid Signalling , 2019, International journal of molecular sciences.

[5]  Daniel W. A. Buchan,et al.  The PSIPRED Protein Analysis Workbench: 20 years on , 2019, Nucleic Acids Res..

[6]  Rafael de Felício,et al.  Structure-function relationship of a citrus salicylate methylesterase and role of salicylic acid in citrus canker resistance , 2019, Scientific Reports.

[7]  J. Gadea,et al.  Plant responses underlying nonhost resistance of Citrus limon against Xanthomonas campestris pv. campestris. , 2018, Molecular plant pathology.

[8]  H. Hopp,et al.  Potato snakin-1 gene enhances tolerance to Rhizoctonia solani and Sclerotinia sclerotiorum in transgenic lettuce plants. , 2018, Journal of biotechnology.

[9]  Guanglei Yang,et al.  Identification and characterization of defensin genes conferring Phytophthora infestans resistance in tomato , 2018, Physiological and Molecular Plant Pathology.

[10]  F. Deeba,et al.  Enhanced Fusarium oxysporum f. sp. tuberosi Resistance in Transgenic Potato Expressing a Rice GLP Superoxide Dismutase Gene , 2018, American Journal of Potato Research.

[11]  J. Lamichhane,et al.  Monitoring the occurrence of tomato bacterial spot and range of the causal agent Xanthomonas perforans in Iran , 2017 .

[12]  Yingkao Hu,et al.  The similar and different evolutionary trends of MATE family occurred between rice and Arabidopsis thaliana , 2016, BMC Plant Biology.

[13]  Wei Zhang,et al.  ELS1, a novel MATE transporter related to leaf senescence and iron homeostasis in Arabidopsis thaliana. , 2016, Biochemical and biophysical research communications.

[14]  Shin-Han Shiu,et al.  Evolution of Gene Duplication in Plants1[OPEN] , 2016, Plant Physiology.

[15]  F. Thibaud-Nissen,et al.  Araport11: a complete reannotation of the Arabidopsis thaliana reference genome , 2016, bioRxiv.

[16]  M. Paret,et al.  Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. , 2015, Molecular plant pathology.

[17]  J. Grosser,et al.  Transgenic Citrus Expressing an Arabidopsis NPR1 Gene Exhibit Enhanced Resistance against Huanglongbing (HLB; Citrus Greening) , 2015, PloS one.

[18]  N. Pontes,et al.  Xanthomonas perforans and X. gardneri associated with bacterial leaf spot on weeds in Brazilian tomato fields , 2015, European Journal of Plant Pathology.

[19]  Jing Fan,et al.  EDS1-mediated basal defense and SA-signaling contribute to post-invasion resistance against tobacco powdery mildew in Arabidopsis , 2015 .

[20]  J. Metraux,et al.  Localization and expression of EDS5H a homologue of the SA transporter EDS5 , 2015, BMC Plant Biology.

[21]  S. Luan,et al.  A DTX/MATE-type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis. , 2014, Molecular plant.

[22]  Andrea Zuccolo,et al.  Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication , 2014, Nature Biotechnology.

[23]  F. Mauch,et al.  Export of Salicylic Acid from the Chloroplast Requires the Multidrug and Toxin Extrusion-Like Transporter EDS51[W][OPEN] , 2013, Plant Physiology.

[24]  Xinnian Dong,et al.  Systemic acquired resistance: turning local infection into global defense. , 2013, Annual review of plant biology.

[25]  T. Shiina,et al.  Chloroplast envelope localization of EDS5, an essential factor for salicylic acid biosynthesis in Arabidopsis thaliana , 2013, Plant signaling & behavior.

[26]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[27]  Dannie Durand,et al.  Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees , 2012, Bioinform..

[28]  Olga Golosova,et al.  Unipro UGENE: a unified bioinformatics toolkit , 2012, Bioinform..

[29]  J. Jiang,et al.  Optimization of factors affecting Agrobacterium-mediated transformation of Micro-Tom tomatoes. , 2012, Genetics and molecular research : GMR.

[30]  A. Chini,et al.  ADS1 encodes a MATE-transporter that negatively regulates plant disease resistance. , 2011, The New phytologist.

[31]  V. Quecini,et al.  The Rg1 allele as a valuable tool for genetic transformation of the tomato 'Micro-Tom' model system , 2010, Plant Methods.

[32]  J. Graham,et al.  Over-expression of the Arabidopsis NPR1 gene in citrus increases resistance to citrus canker , 2010, European Journal of Plant Pathology.

[33]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[34]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[35]  I. Graham,et al.  Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: discovery of bifunctional O- and C-glucosyltransferases. , 2008, The Plant journal : for cell and molecular biology.

[36]  D. Shibata,et al.  Overexpression of the Arabidopsis thaliana EDS5 gene enhances resistance to viruses. , 2008, Plant biology.

[37]  Hiroshi Ezura,et al.  A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. , 2006, Plant & cell physiology.

[38]  Jean-Pierre Métraux,et al.  EDS5, an Essential Component of Salicylic Acid–Dependent Signaling for Disease Resistance in Arabidopsis, Is a Member of the MATE Transporter Family Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010376. , 2002, The Plant Cell Online.

[39]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[40]  Jean-Pierre Métraux,et al.  Salicylic Acid Induction–Deficient Mutants of Arabidopsis Express PR-2 and PR-5 and Accumulate High Levels of Camalexin after Pathogen Inoculation , 1999, Plant Cell.

[41]  Sarah Melamed,et al.  A new model system for tomato genetics , 1997 .

[42]  P. Argos,et al.  Knowledge‐based protein secondary structure assignment , 1995, Proteins.

[43]  M. Koornneef,et al.  A simple, nondestructive spraying assay for the detection of an active kanamycin resistance gene in transgenic tomato plants , 1989, Theoretical and Applied Genetics.

[44]  F. Skoog,et al.  A revised medium for rapid growth and bio assays with tobacco tissue cultures , 1962 .

[45]  J. Doyle,et al.  Isolation of plant DNA from fresh tissue , 1990 .