First-principles calculations of binary Al compounds: Enthalpies of formation and elastic properties

Abstract Systematic first-principles calculations of energy vs. volume (E–V) and single crystal elastic stiffness constants ( c i j ’s) have been performed for 50 Al binary compounds in the Al–X (X = Co, Cu, Hf, Mg, Mn, Ni, Sr, V, Ti, Y, and Zr) systems. The E–V equations of state are fitted by a four-parameter Birch–Murnaghan equation, and the c i j ’s are determined by an efficient strain–stress method. The calculated lattice parameters, enthalpies of formation, and c i j ’s of these binary compounds are compared with the available experimental data in the literature. In addition, elastic properties of polycrystalline aggregates including bulk modulus (B), shear modulus (G), Young’s modulus (E), B/G (bulk/shear) ratio, and anisotropy ratio are calculated and compared with the experimental and theoretical results available in the literature. The systematic predictions of elastic properties and enthalpies of formation for Al–X compounds provide an insight into the understanding and design of Al-based alloys.

[1]  R. E. Watson,et al.  Enthalpies of formation of AlNi: Experiment versus theory , 1998 .

[2]  O. Kubaschewski,et al.  Heats of formation of transition-metal aluminides , 1960 .

[3]  V. Ozoliņš,et al.  First-principles aluminum database: Energetics of binary Al alloys and compounds , 2006 .

[4]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[5]  Zi-kui Liu,et al.  First-principles calculations of pure elements: Equations of state and elastic stiffness constants , 2010 .

[6]  Zi-kui Liu,et al.  First-principles calculations of the elastic, phonon and thermodynamic properties of Al12Mg17 , 2010 .

[7]  P. Nash,et al.  Review: Experimental enthalpies of formation of compounds in Al-Ni-X systems , 2006 .

[8]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[9]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[10]  S. Delsante,et al.  Phase stability and cohesive properties of Ti–Zn intermetallics: First-principles calculations and experimental results , 2006 .

[11]  Masahiro Koiwa,et al.  Single-crystal elastic constants of intermetallic compounds , 1996 .

[12]  W. Ding,et al.  Structural and mechanical properties of Mg17Al12 and Mg24Y5 from first-principles calculations , 2008 .

[13]  Zi-kui Liu First-Principles Calculations and CALPHAD Modeling of Thermodynamics , 2009 .

[14]  O. Kubaschewski The heats of formation in the system aluminium + nickel + titanium , 1958 .

[15]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[16]  Zi-kui Liu,et al.  First-principles calculations of the Zn–Zr system , 2006 .

[17]  H. Ledbetter,et al.  Mechanical hardness: A semiempirical theory based on screened electrostatics and elastic shear , 1998 .

[18]  H. Grabke O. Kubaschewski (Ed.): Atomic Energy Review, Special Issue No. 3 “Tantalum: Physico‐Chemical Properties of its Compounds and Alloys”. International Atomic Energy Agency, Wien 1972. Preis: 5,00 $. , 1974 .

[19]  Honghui Xu,et al.  Thermodynamic reassessment of the Al – V system , 2004 .

[20]  H. Warlimont,et al.  The elastic behaviour of β2-NiAl alloys , 1977 .

[21]  R. I. Taylor,et al.  A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals , 1982 .

[22]  R. Kematick,et al.  Thermodynamic study of the zirconium-aluminum system , 1984 .

[23]  Martin Ostoja-Starzewski,et al.  Universal elastic anisotropy index. , 2008, Physical review letters.

[24]  Zi-kui Liu,et al.  Effects of alloying elements on elastic properties of Ni3Al by first-principles calculations , 2010 .

[25]  Zi-kui Liu,et al.  First-principles calculations of phonon and thermodynamic properties in the boron-alkaline earth metal binary systems : B-Ca, B-Sr, and B-Ba , 2007 .

[26]  I. Ansara,et al.  Thermodynamic re-assessment of the ternary system Al-Cr-Ni , 2001 .

[27]  A. Turchanin,et al.  Enthalpies of formation for the Al?Y and Al?Y?Ni intermetallic compounds , 1997 .

[28]  O. J. Kleppa,et al.  Standard molar enthalpies of formation of PdAl, PtAl, ScAl1.78, YAl2 and LaAl2 , 1991 .

[29]  Shun-Li Shang,et al.  First-principles elastic constants of α- and θ-Al2O3 , 2007 .

[30]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[31]  J. Gachon,et al.  Calorimetric study of the aluminium–titanium system , 2003 .

[32]  K. Kimura,et al.  Elastic constants of TiAl3 and ZrAl3 single crystals , 1991, Journal of Materials Science.

[33]  U. Anselmi-Tamburini,et al.  Thermodynamic study of intermetallic phases in the HfAl system , 1995 .

[34]  Zhanpeng Jin,et al.  Thermodynamic assessment of the Al-Zr binary system , 2001 .

[35]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[36]  R. E. Watson,et al.  Enthalpies of formation of Ni3Al: Experiment versus theory , 1996 .

[37]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[38]  Zi-kui Liu,et al.  Thermodynamic modelling of the Zn–Zr system , 2006 .

[39]  Michael J. Mehl,et al.  Embedded-atom potential for B2-NiAl , 2002 .

[40]  R. Cowley Acoustic phonon instabilities and structural phase transitions , 1976 .

[41]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[42]  W. A. Dench,et al.  The heats of formation in the systems titanium-aluminium and titanium-iron , 1955 .

[43]  S. Whang,et al.  Elastic constants of single crystal γ – TiAl , 1995 .

[44]  J. Smith,et al.  Single‐crystal elastic constants of Al2Cu , 1978 .

[45]  O. J. Kleppa,et al.  Standard enthalpies of formation of 4d aluminides by direct synthesis calorimetry , 1993 .

[46]  P. Nash,et al.  The enthalpy of formation of NiAl , 2005 .

[47]  J. Hafner,et al.  Understanding the complex metallic element Mn. I. Crystalline and noncollinear magnetic structure of α-Mn , 2003 .

[48]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[49]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[50]  M. Asta,et al.  First-principles calculation of structural energetics of Al-TM (TM = Ti, Zr, Hf) intermetallics , 2005 .

[51]  Yong Du,et al.  Thermodynamic modeling of the Al–Sr system , 2003 .

[52]  J. Abriata,et al.  The Al-Zr (aluminum-zirconium) system , 1992 .

[53]  L. Kaufman,et al.  Calculation of the Ni-Al-W, Ni-Al-Hf and Ni-Cr-Hf systems , 1975 .

[54]  Zi-kui Liu,et al.  Contribution of first-principles energetics to Al–Mg thermodynamic modeling , 2005 .

[55]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[56]  M. Yoo,et al.  Elastic constants, fault energies, and dislocation reactions in TiAl: A first-principles total-energy investigation , 1990 .

[57]  Y. Ouyang,et al.  An approach to determine enthalpies of formation for ternary compounds , 2010 .

[58]  Zhanpeng Jin,et al.  Ab initio calculations of mechanical and thermodynamic properties for the B2-based AlRE , 2007 .

[59]  Yong Du,et al.  A thermodynamic reassessment of the Al–Y system , 2006 .

[60]  Zi-kui Liu,et al.  First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al , 2010 .

[61]  C. Stassis,et al.  The Elastic Constants of Ni3Al at 0 and 23.5 °C , 1981, March 16.

[62]  Zhanpeng Jin,et al.  Thermodynamic assessment of the Al-Hf binary system , 2002 .

[63]  Zi-kui Liu,et al.  Enthalpies of formation of magnesium compounds from first-principles calculations , 2007 .

[64]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[65]  Zi-kui Liu,et al.  Elastic constants of binary Mg compounds from first-principles calculations , 2009 .

[66]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[67]  Zi-kui Liu,et al.  Effects of alloying elements on elastic properties of Ni by first-principles calculations , 2009 .

[68]  H. Yang,et al.  Temperature and composition dependence of the elastic constants of Ni3Al , 1999 .

[69]  Zi-kui Liu,et al.  Reassessment of the Al–Mn system and a thermodynamic description of the Al–Mg–Mn system , 2007 .

[70]  R. Goldberg,et al.  Solution-calorimetric determination of the standard molar enthalpies of formation of the pseudobinary compounds Zr(AlxFe1 - x)2 at the temperature 298.15 K , 1994 .

[71]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[72]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[73]  O. J. Kleppa,et al.  The standard enthalpies of formation of the compounds of early transition metals with late transition metals and with noble metals as determined by Kleppa and co-workers at the University of Chicago : A review , 2001 .

[74]  Paul Saxe,et al.  Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress , 2002 .

[75]  Z. Moser,et al.  Calorimetric studies of the enthalpies of formation of Al3Ni2, AlNi and AlNi3 , 2004 .

[76]  J. Hafner,et al.  Interatomic bonding, elastic properties, and ideal strength of transition metal aluminides: A case study for Al 3 ( V , Ti ) , 2005 .

[77]  Wei Zhou,et al.  Structural, Elastic, and Electronic Properties of Al-Cu Intermetallics from First-Principles Calculations , 2009 .

[78]  R. Melnik,et al.  First-principles studies of Al–Ni intermetallic compounds , 2009 .

[79]  Yi Wang,et al.  Ab initio lattice stability in comparison with CALPHAD lattice stability , 2004 .

[80]  Zi-kui Liu,et al.  A combined CALPHAD/first-principles remodeling of the thermodynamics of Al–Sr: unsuspected ground state energies by “rounding up the (un)usual suspects” , 2004 .

[81]  Stefano Curtarolo,et al.  Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys , 2005, cond-mat/0502465.

[82]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .