A two dimensional field theory for motion computation

The local extraction of motion information from brightness patterns by individual movement detectors of the correlation-type is considered in the first part of the paper. A two-dimensional field theory of movement detection is developed by treating the distance between two adjacent photoreceptors as a differential. In the first approximation of the theory we only consider linear terms of the time interval between the reception of a contrast element and its delayed representation by the detector and linear terms of the spatial distances between adjacent photoreceptors. As a result we may neglect terms of higher order than quadratic in a Taylor series development of the brightness pattern. The responses of pairs of individual movement detectors are combined to a local response vector. In the first approximation of the detector field theory the response vector is proportional to the instantaneous pattern velocity vector and linearly dependent on local properties of the moving pattern. The linear dependence on pattern properties is represented by a two by two tensor consisting of elements which are nonlinear, local functional of the moving pattern. Some of the properties of the tensor elements are treated in detail. So, for instance, it is shown that the off-diagonal elements of the tensor disappear when the moving pattern consists of x- and y-dependent separable components. In the second part of the paper the tensor relation leading to the output of a movement detector pair is spatially integrated. The result of the integration is an approximation to a summation of the outputs of an array of detector pairs. The spatially integrated detector tensor relates the translatory motion vector to the resultant output vector. It is shown that the angle between the motion vector and the resultant output vector is always smaller than ±90° whereas the angle between the motion vector and local response vectors, elicited by detector pairs, may cover the entire angular range. In the discussion of the paper the limits of the field theory for motion computation as well as its higher approximations are pointed out in some detail. In a special chapter the dependence of the detector response on the pattern properties is treated and in another chapter questions connected with the so called aperture problem are discussed. Furthermore, properties for compensation of the pattern dependent deviation angle by spatial physiological integration are mentioned in the discussion.

[1]  E. Buchner Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.

[2]  H. Wilson A model for direction selectivity in threshold motion perception , 2004, Biological Cybernetics.

[3]  Klaus Hausen,et al.  Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[4]  W. Reichardt,et al.  Properties of individual movement detectors as derived from behavioural experiments on the visual system of the fly , 1988, Biological Cybernetics.

[5]  Hendrik Eckert,et al.  Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L , 1973, Kybernetik.

[6]  Martin Egelhaaf On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. 2: Figure-dectection cells, a new class of visual interneurones , 1985 .

[7]  Giulio Fermi,et al.  Optomotorische Reaktionen der Fliege Musca Domestica , 1963, Kybernetik.

[8]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[9]  M. Egelhaaf On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985 .

[10]  K G Götz,et al.  Principles of optomotor reactions in insects. , 1972, Bibliotheca ophthalmologica : supplementa ad ophthalmologica.

[11]  Werner Reichardt,et al.  Evaluation of optical motion information by movement detectors , 1987, Journal of Comparative Physiology A.

[12]  W. Reichardt,et al.  Dynamic response properties of movement detectors: Theoretical analysis and electrophysiological investigation in the visual system of the fly , 1987, Biological Cybernetics.

[13]  W. Reichardt,et al.  Elementary pattern discrimination (behavioural experiments with the fly Musca domestica) , 1986, Biological Cybernetics.

[14]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[15]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[16]  Karl Georg Götz,et al.  Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila , 1965, Kybernetik.

[17]  Peter Kunze,et al.  Untersuchung des Bewegungssehens fixiert fliegender Bienen , 1961, Zeitschrift für Vergleichende Physiologie.

[18]  G. D. Mccann,et al.  Optomotor response studies of insect vision , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  B. Hassenstein,et al.  Über die Wahrnehmung der Bewegung von Figuren und unregelmässigen Helligkeitsmustern , 1957, Zeitschrift für vergleichende Physiologie.

[20]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[21]  B. Hassenstein Optokinetische Wirksamkeit bewegter periodischer Muster (Nach Messungen am Rüsselkäfer Chlorophanus viridis) , 1959 .

[22]  J. J. Koenderink,et al.  Temporal properties of the visual detectability of moving spatial white noise , 2004, Experimental Brain Research.

[23]  Erich Buchner,et al.  Behavioural Analysis of Spatial Vision in Insects , 1984 .

[24]  T. Poggio,et al.  Considerations on models of movement detection , 1973, Kybernetik.

[25]  M. Egelhaaf,et al.  Movement detectors provide sufficient information for local computation of 2-D velocity field , 1988, Naturwissenschaften.

[26]  Werner Reichardt,et al.  Figure-ground discrimination by relative movement in the visual system of the fly , 2004, Biological Cybernetics.

[27]  D. Varjú Optomotorische Reaktionen auf die Bewegung periodischer Helligkeitsmuster , 1959 .

[28]  W. Reichardt,et al.  Übertragungseigenschaften im Auswertesystem für das Bewegungssehen , 1959 .

[29]  J. van Santen,et al.  Temporal covariance model of human motion perception. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[30]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[31]  J. J. Koenderink,et al.  Spatial properties of the visual detectability of moving spatial white noise , 2004, Experimental Brain Research.

[32]  J. van Santen,et al.  Elaborated Reichardt detectors. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[33]  W. Reichardt Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems , 1957 .

[34]  O J Braddick,et al.  Temporal Properties of the Short-Range Process in Apparent Motion , 1985, Perception.

[35]  Martin Egelhaaf,et al.  On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985, Biological Cybernetics.