Laser ion acceleration for hadron therapy

We discuss using laser plasma as a source of high-energy ions for the purposes of proton therapy. The research in this direction has been conducted in almost all world leading laser science centers. The approach is based on the efficient ion acceleration observed in laboratory, theory and numerical experiments (in silico) on the high-power laser interaction with matter.

[1]  R. Wilson Radiological use of fast protons. , 1946, Radiology.

[2]  S. V. Bulanov,et al.  Regular mechanisms of electron and ion acceleration in the interaction of strong electromagnetic waves with a plasma , 1990 .

[3]  A A Gonoskov,et al.  Multicascade proton acceleration by a superintense laser pulse in the regime of relativistically induced slab transparency. , 2009, Physical review letters.

[4]  V. Popov,et al.  REVIEWS OF TOPICAL PROBLEMS: Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory) , 2004 .

[5]  Uli Weber,et al.  Comparison of Carbon Ions Versus Protons , 2009, Cancer journal.

[6]  A. Kim,et al.  Generating high-energy highly charged ion beams from petawatt-class laser interactions with compound targets. , 2012, Physical review letters.

[7]  M. Kaluza,et al.  Comment on "Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma". , 2007, Physical Review Letters.

[8]  Wim Leemans The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator , 2010 .

[9]  D. Gordon,et al.  Enhanced proton acceleration by an ultrashort laser interaction with structured dynamic plasma targets. , 2013, Physical review letters.

[10]  S. V. Bulanov,et al.  Unlimited energy gain in the laser-driven radiation pressure dominant acceleration of ions , 2009, 0912.1892.

[11]  Marco Borghesi,et al.  Ion acceleration by superintense laser-plasma interaction , 2013, 1302.1775.

[12]  T. C. Sangster,et al.  Intense high-energy proton beams from Petawatt-laser irradiation of solids. , 2000, Physical review letters.

[13]  Radiotherapy using a laser proton accelerator , 2008, 0804.3826.

[14]  U Schramm,et al.  Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices. , 2008, Physical review letters.

[15]  A. V. Kuznetsov,et al.  Oncological hadrontherapy with laser ion accelerators , 2002 .

[16]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[17]  Juhao Wu,et al.  Toward integrated laser-driven ion accelerator systems at the photo-medical research center in Japan , 2010 .

[18]  Stefano Atzeni,et al.  A first analysis of fast ignition of precompressed ICF fuel by laser-accelerated protons , 2002 .

[19]  S. V. Bulanov,et al.  High-Quality Laser-Produced Proton Beam Realized by the Application of a Synchronous RF Electric Field , 2007 .

[20]  S. V. Bulanov,et al.  On the ion acceleration by high power electromagnetic waves in the radiation pressure dominated regime , 2009 .

[21]  V. Highland,et al.  Some Practical Remarks on Multiple Scattering , 1975 .

[22]  S. Fritzler,et al.  Proton beams generated with high-intensity lasers: Applications to medical isotope production , 2003 .

[23]  V. F. Kovalev,et al.  High-energy ion generation by short laser pulses , 2004 .

[24]  C. Niemann,et al.  Proton acceleration experiments and warm dense matter research using high power lasers , 2009 .

[25]  Katsunobu Nishihara,et al.  Feasibility of Using Laser Ion Accelerators in Proton Therapy , 2004 .

[26]  U. Fano,et al.  Penetration of protons, alpha particles, and mesons , 1963 .

[27]  Erik Lefebvre,et al.  Practicability of protontherapy using compact laser systems. , 2004, Medical physics.

[28]  T. Esirkepov,et al.  Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor , 2001 .

[29]  Marco Durante,et al.  Physical basis of radiation protection in space travel , 2011 .

[30]  D. Neely,et al.  Quasi-monochromatic pencil beam of laser-driven protons generated using a conical cavity target holder , 2012 .

[31]  V. Tikhonchuk,et al.  Charge separation effects in solid targets and ion acceleration with a two-temperature electron distribution. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Dirk Boye,et al.  Adequate margin definition for scanned particle therapy in the incidence of intrafractional motion. , 2013, Physics in medicine and biology.

[33]  Patrick Audebert,et al.  Energetic ions generated by laser pulses: A detailed study on target properties , 2002 .

[34]  W. H. Bragg,et al.  XXXIX. On the α particles of radium, and their loss of range in passing through various atoms and molecules , 1905 .

[35]  Edward Ott,et al.  Self‐focusing of short intense pulses in plasmas , 1987 .

[36]  Y. Gu,et al.  Laser ion acceleration toward future ion beam cancer therapy - Numerical simulation study -. , 2013 .

[37]  S. V. Bulanov,et al.  Energetic protons from a few-micron metallic foil evaporated by an intense laser pulse. , 2003, Physical review letters.

[38]  S. V. Bulanov,et al.  Concerning the maximum energy of ions accelerated at the front of a relativistic electron cloud expanding into vacuum , 2004 .

[39]  Uwe Schneider,et al.  Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. , 2002, International journal of radiation oncology, biology, physics.

[40]  P. Kaw,et al.  Ponderomotive ion acceleration in dense magnetized laser-irradiated thick target plasmas , 2012 .

[41]  Joao Seco,et al.  Energy- and time-resolved detection of prompt gamma-rays for proton range verification , 2013, Physics in medicine and biology.

[42]  K.-U. Amthor,et al.  Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets , 2006, Nature.

[43]  H. Daido,et al.  Focusing and spectral enhancement of a repetition-rated, laser-driven, divergent multi-MeV proton beam using permanent quadrupole magnets , 2009 .

[44]  Relativistic electron beam slicing by wakefield in plasmas , 2006, physics/0606092.

[45]  E. Pedroni,et al.  The 200-MeV proton therapy project at the Paul Scherrer Institute: conceptual design and practical realization. , 1995, Medical physics.

[46]  V. I. Veksler,et al.  The principle of coherent acceleration of charged particles , 1957 .

[47]  Masakatsu Murakami,et al.  Measurement of relative biological effectiveness of protons in human cancer cells using a laser-driven quasimonoenergetic proton beamline , 2011 .

[48]  K Nemoto,et al.  Laser ion acceleration via control of the near-critical density target. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Chan Hyeong Kim,et al.  Prompt gamma measurements for locating the dose falloff region in the proton therapy , 2006 .

[50]  S. V. Bulanov,et al.  Fast Ion Generation by High-Intensity Laser Irradiation of Solid Targets and Applications , 2006 .

[51]  Timur Zh. Esirkepov,et al.  Relativistic mirrors in plasmas. Novel results and perspectives , 2013, Physics-Uspekhi.

[52]  P P Rajeev,et al.  Laser-generated ultrashort multimegagauss magnetic pulses in plasmas. , 2002, Physical review letters.

[53]  Andrea Macchi,et al.  "Light sail" acceleration reexamined. , 2009, Physical review letters.

[54]  Hiroyuki Daido,et al.  Beam collimation and transport of quasineutral laser-accelerated protons by a solenoid field , 2010 .

[55]  M Borghesi,et al.  Highly efficient relativistic-ion generation in the laser-piston regime. , 2004, Physical review letters.

[56]  Coulomb explosion in a cluster plasma , 2005 .

[57]  S. V. Bulanov,et al.  Ultra-Intense, High Spatio-Temporal Quality Petawatt-Class Laser System and Applications , 2013 .

[58]  Eros Pedroni,et al.  Treating Cancer with Protons , 2002 .

[59]  L. Hau,et al.  Mathematical and physical aspects of Kappa velocity distribution , 2007 .

[60]  Toshiki Tajima,et al.  Laser Acceleration of Ions for Radiation Therapy , 2009 .

[61]  Antony Lomax,et al.  In vivo proton range verification: a review , 2013, Physics in medicine and biology.

[62]  D. Schardt,et al.  Magnetic scanning system for heavy ion therapy , 1993 .

[63]  M. Murakami,et al.  Self-similar expansion of finite-size non-quasi-neutral plasmas , 2005 .

[64]  Brunel Not-so-resonant, resonant absorption. , 1987, Physical review letters.

[65]  Ferenc Krausz,et al.  A laser-driven nanosecond proton source for radiobiological studies , 2012 .

[66]  G. Kraft,et al.  Tumor therapy with heavy charged particles , 2000 .

[67]  Katia Parodi,et al.  Charged hadron tumour therapy monitoring by means of PET , 2004 .

[68]  R. B. Saptsov,et al.  ∫ Erratum: "On the Relaxation of the Order Parameter in the BCS Model," Pis'ma Zh. Éksp. Teor. Fiz. 83, 414 (2006) (JETP Lett. 83, 355 (2006)) , 2007 .

[69]  Deanna M. Pennington,et al.  Energetic proton generation in ultra-intense laser–solid interactions , 2000 .

[70]  Yu. V. Kornev,et al.  A new method for studying the process of sublimation of metals , 1957 .

[71]  R. Fonseca,et al.  Dynamics and control of shock shells in the coulomb explosion of very large deuterium clusters. , 2005, Physical review letters.

[72]  S M Seltzer,et al.  AAPM protocol for 40-300 kV x-ray beam dosimetry in radiotherapy and radiobiology. , 2001, Medical physics.

[73]  D. V. Sokolov,et al.  Ion acceleration in a dipole vortex in a laser plasma corona , 2005 .

[74]  Antony J Lomax,et al.  Emerging technologies in proton therapy , 2011, Acta oncologica.

[75]  M. F. Lomanov,et al.  PHYSICS OF OUR DAYS: Application of high-energy heavy charged particles in medicine , 1973 .

[76]  T. Arber,et al.  Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids. , 2012, Physical review letters.

[77]  T. Puck Radiation and the human cell. , 1960, Scientific American.

[78]  A. V. Kuznetsov,et al.  Efficiency of ion acceleration by a relativistically strong laser pulse in an underdense plasma , 2001 .

[79]  Brian J. Albright,et al.  Laser-driven 1 GeV carbon ions from preheated diamond targets in the break-out afterburner regime , 2013 .

[80]  H. T. Kim,et al.  Laser-driven proton acceleration enhancement by nanostructured foils. , 2012, Physical review letters.

[81]  Christopher Kurz,et al.  An experimental approach to improve the Monte Carlo modelling of offline PET/CT-imaging of positron emitters induced by scanned proton beams , 2013, Physics in medicine and biology.

[82]  B Shahine,et al.  Particle in cell simulation of laser-accelerated proton beams for radiation therapy. , 2002, Medical physics.

[83]  A. Kaplan,et al.  Shock-shells in Coulomb explosion of nano-clusters , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[84]  Владимир Павлович Крайнов,et al.  Генерация быстрых заряженных частиц и сверхсильных магнитных полей при взаимодействии сверхкоротких интенсивных лазерных импульсов с твердотельными мишенями , 2008 .

[85]  M. Key,et al.  Dynamics of high-energy proton beam acceleration and focusing from hemisphere-cone targets by high-intensity lasers. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  Harvey F. Lodish,et al.  MOLECULAR.CELL.BIOLOGY 5TH.ED , 2003 .

[87]  Vladimir Chvykov,et al.  Generation of GeV protons from 1 PW laser interaction with near critical density targets. , 2009, Physics of plasmas.

[88]  T. Märk,et al.  Electron impact ionization of 5- and 6-chlorouracil: appearance energies , 2004 .

[89]  P. Audebert,et al.  Laser-driven proton scaling laws and new paths towards energy increase , 2006 .

[90]  C D Woodworth,et al.  Cell surface as a fractal: normal and cancerous cervical cells demonstrate different fractal behavior of surface adhesion maps at the nanoscale. , 2011, Physical review letters.

[91]  S. V. Bulanov,et al.  Control of energy distribution of the proton beam with an oblique incidence of the laser pulse , 2009, 0901.0750.

[92]  D. Hunting,et al.  Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. , 2000, Science.

[93]  J. Meyer-ter-Vehn,et al.  Fast ignition of inertial fusion targets by laser-driven carbon beams , 2009, 0909.0342.

[94]  D. Larson,et al.  One-dimensional simulations of ultrashort intense laser pulses on solid-density targets , 1997 .

[95]  S. Gus'kov Fast ignition of inertial confinement fusion targets , 2013 .

[96]  Jiri Limpouch,et al.  Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses , 2008 .

[97]  S. V. Bulanov,et al.  Prepulse and amplified spontaneous emission effects on the interaction of a petawatt class laser with thin solid targets , 2013, 1310.0568.

[98]  B. Sharkov,et al.  Intense ion beams for generating extreme states of matter , 2008 .

[99]  R. Fonseca,et al.  Direct Acceleration of Ions With Variable-Frequency Lasers , 2008, IEEE Transactions on Plasma Science.

[100]  V A Gasilov,et al.  Energy increase in multi-MeV ion acceleration in the interaction of a short pulse laser with a cluster-gas target. , 2009, Physical review letters.

[101]  Masakatsu Murakami,et al.  Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells , 2009 .

[102]  V. Tikhonchuk Physics of laser-assisted ion acceleration , 2010 .

[103]  S. V. Bulanov,et al.  Generation of high-quality charged particle beams during the acceleration of ions by high-power laser radiation , 2002 .

[104]  Y. Medvedev Ion front in an expanding collisionless plasma , 2011 .

[105]  Jian Zheng,et al.  Laser generated proton beam focusing and high temperature isochoric heating of solid matter , 2007 .

[106]  S. V. Bulanov,et al.  Proton Acceleration due to Anisotropic Coulomb Explosion of a Double-Layer Target Irradiated by an Intense Laser Pulse , 2012 .

[107]  F. F. Kamenets,et al.  Accelerated dense ion filament formed by ultra intense laser in plasma slab , 2002 .

[108]  A. P. Matafonov,et al.  Generation of fast charged particles and superstrong magnetic fields in the interaction of ultrashort high-intensity laser pulses with solid targets , 2008 .

[109]  Marco Durante,et al.  Charged particles in radiation oncology , 2010, Nature Reviews Clinical Oncology.

[110]  T. Cremer,et al.  Microirradiation of cells with energetic heavy ions. , 2005, Radiation and environmental biophysics.

[111]  Patrick Audebert,et al.  Ultrafast Laser-Driven Microlens to Focus and Energy-Select Mega-Electron Volt Protons , 2006, Science.

[112]  S. V. Bulanov,et al.  HIGH QUALITY LASER-PRODUCED PROTON BEAM GENERATION BY PHASE ROTATION , 2007 .

[113]  Jacques Denavit,et al.  Collisionless plasma expansion into a vacuum , 1979 .

[114]  M. D. Perry,et al.  Fast ignition by intense laser-accelerated proton beams. , 2001, Physical review letters.

[115]  C. Capjack,et al.  Fast ignitor concept with light ions , 2001 .

[116]  Arkady Gonoskov,et al.  Horizons of petawatt laser technology , 2011, Physics-Uspekhi.

[117]  B. Sharkov,et al.  European Facility for Antiproton and Ion Research (FAIR): the new international center for fundamental physics and its research program , 2012 .

[118]  Jan J Wilkens,et al.  Advanced treatment planning methods for efficient radiation therapy with laser accelerated proton and ion beams. , 2010, Medical physics.

[119]  S. Krasheninnikov,et al.  Mechanism of heating of pre-formed plasma electrons in relativistic laser-matter interaction , 2012 .

[120]  Z. Sheng,et al.  Three dimensional effects on proton acceleration by intense laser solid target interaction , 2013 .

[121]  D. Biskamp Collisionless shock waves in plasmas , 1973 .

[122]  C. Martinis,et al.  Transport and energy selection of laser generated protons for postacceleration with a compact linac , 2013 .

[123]  V. P. Krainov,et al.  Cluster beams in the super-intense femtosecond laser pulse , 2002 .

[124]  T E Cowan,et al.  Isochoric heating of solid-density matter with an ultrafast proton beam. , 2003, Physical review letters.

[125]  F. Novotný,et al.  Micro-sphere layered targets efficiency in laser driven proton acceleration , 2013 .

[126]  Vladimir Chvykov,et al.  Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses. , 2008, Medical physics.

[127]  T R Mackie,et al.  A compact linac for intensity modulated proton therapy based on a dielectric wall accelerator. , 2008, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics.

[128]  P. Mora,et al.  Plasma expansion into a vacuum. , 2003, Physical review letters.

[129]  Giuseppe Schettino,et al.  ELIMED: a new hadron therapy concept based on laser driven ion beams , 2013, Europe Optics + Optoelectronics.

[130]  Masakatsu Murakami,et al.  High energy ions generated by laser driven Coulomb explosion of cluster , 2001 .

[131]  Владимир Евгеньевич Фортов,et al.  Интенсивные ионные пучки для генерации экстремальных состояний вещества , 2008 .

[132]  D. Neely,et al.  Generating "superponderomotive" electrons due to a non-wake-field interaction between a laser pulse and a longitudinal electric field. , 2013, Physical review letters.

[133]  Zulfikar Najmudin,et al.  Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma. , 2006 .

[134]  S. V. Bulanov,et al.  Relativistic Interaction of Laser Pulses with Plasmas , 2001 .

[135]  R. Fonseca,et al.  Laser-driven shock acceleration of monoenergetic ion beams. , 2011, Physical review letters.

[136]  M. Furman,et al.  Erratum: Electric field of a 2D elliptical charge distribution inside a cylindrical conductor [Phys. Rev. ST Accel. Beams 10, 081001 (2007)] , 2007 .

[137]  D W Litzenberg,et al.  Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-Coulomb-explosion regime. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[138]  K. Nishihara,et al.  Generation of collimated beams of relativistic ions in laser-plasma interactions , 2000 .

[139]  I. Kourakis,et al.  Comment on 'Mathematical and physical aspects of Kappa velocity distribution' [Phys. Plasmas 14, 110702 (2007)] , 2009 .

[140]  S. G. Bochkarev,et al.  Ion acceleration in short-laser-pulse interaction with solid foils , 2005 .

[141]  Vladimir T. Tikhonchuk,et al.  Optimization of laser-target interaction for proton acceleration , 2013 .

[142]  Wolfgang Enghardt,et al.  Dose-dependent biological damage of tumour cells by laser-accelerated proton beams , 2010 .

[143]  Katia Parodi,et al.  Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy. , 2007, International journal of radiation oncology, biology, physics.

[144]  Mitsuyuki Abe,et al.  Usefulness of positron-emission tomographic images after proton therapy. , 2002, International journal of radiation oncology, biology, physics.

[145]  K Mima,et al.  Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. , 2002, Physical review letters.

[146]  P. Norreys,et al.  Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[147]  E. Blakely,et al.  Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness. , 1998, Radiation research.

[148]  M. Nussenzweig,et al.  Chromatin dynamics and the preservation of genetic information , 2007, Nature.

[149]  J. Vieira,et al.  All-optical trapping and acceleration of heavy particles , 2008, 0802.3173.

[150]  Kiminori Kondo,et al.  Proton acceleration to 40 MeV using a high intensity, high contrast optical parametric chirped-pulse amplification/Ti:sapphire hybrid laser system. , 2012, Optics letters.

[151]  A. Arefiev,et al.  Parametric amplification of laser-driven electron acceleration in underdense plasma. , 2012, Physical review letters.

[152]  Tatsufumi Nakamura,et al.  On extreme field limits in high power laser matter interactions: radiation dominant regimes in high intensity electromagnetic wave interaction with electrons , 2013, Europe Optics + Optoelectronics.

[153]  V. D. Mur,et al.  Current progress in developing the nonlinear ionization theory of atoms and ions , 2015 .

[154]  J. Meyer-ter-Vehn,et al.  Angular distributions of fast electrons, ions, and Bremsstrahlung x/gamma-rays in intense laser interaction with solid targets. , 2000, Physical review letters.

[155]  T. Tajima,et al.  Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. , 2006, Physical review letters.

[156]  J. Jortner,et al.  ENERGETICS AND DYNAMICS OF COULOMB EXPLOSION OF HIGHLY CHARGED CLUSTERS , 1997 .

[157]  Michael Scholz,et al.  Quantification of the relative biological effectiveness for ion beam radiotherapy: direct experimental comparison of proton and carbon ion beams and a novel approach for treatment planning. , 2010, International journal of radiation oncology, biology, physics.

[158]  Masaki Kando,et al.  High-energy ions from near-critical density plasmas via magnetic vortex acceleration. , 2010, Physical review letters.

[159]  Francesco Pegoraro,et al.  Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma , 1994 .

[160]  Dieter Schardt,et al.  Heavy-ion tumor therapy: Physical and radiobiological benefits , 2010 .

[161]  Shinji Sato,et al.  Moving target irradiation with fast rescanning and gating in particle therapy. , 2010, Medical physics.

[162]  K M Prise,et al.  Inactivation of V79 cells by low-energy protons, deuterons and helium-3 ions. , 1996, International journal of radiation biology.

[163]  S. V. Bulanov,et al.  Unlimited ion acceleration by radiation pressure. , 2010, Physical review letters.

[164]  Marco Durante,et al.  Assessing the risk of second malignancies after modern radiotherapy , 2011, Nature Reviews Cancer.

[165]  S. Bauer,et al.  A survey of MRI-based medical image analysis for brain tumor studies , 2013, Physics in medicine and biology.

[166]  Sandrine A. Gaillard,et al.  Focusing of short-pulse high-intensity laser-accelerated proton beams , 2011, Nature Physics.

[167]  Y. Iwashita,et al.  Phase rotation scheme of laser-produced ions for reduction of the energy spread , 2006 .

[168]  S. V. Bulanov,et al.  Multi-charged heavy ion acceleration from the ultra-intense short pulse laser system interacting with the metal target. , 2014, The Review of scientific instruments.

[169]  V. Khoroshkov Radiation beam therapy evolution: From X-rays to hadrons , 2006 .

[170]  E. Esarey,et al.  Optimized laser pulse profile for efficient radiation pressure acceleration of ions , 2012, 1208.5201.

[171]  Katsunobu Nishihara,et al.  Ion acceleration by superintense laser pulses in plasmas , 1999, Journal of Experimental and Theoretical Physics Letters.

[172]  Denavit Absorption of high-intensity subpicosecond lasers on solid density targets. , 1992, Physical review letters.

[173]  Marco Durante,et al.  Particle therapy for noncancer diseases. , 2012, Medical physics.

[174]  C. Labaune,et al.  Hole boring in a DT Pellet and Fast-Ion Ignition with Ultraintense Laser Pulses. , 2009, Physical review letters.

[175]  Liseikina,et al.  High density collimated beams of relativistic ions produced by petawatt laser pulses in plasmas , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[176]  Paul Gibbon,et al.  Spectral shaping of laser generated proton beams , 2008 .

[177]  S. V. Bulanov,et al.  Optics in the relativistic regime , 2006 .

[178]  W. Enghardt,et al.  Dose-controlled irradiation of cancer cells with laser-accelerated proton pulses , 2013 .

[179]  Takashi NAKAMURA,et al.  Development of General-Purpose Particle and Heavy Ion Transport Monte Carlo Code , 2002 .

[180]  Anthony Raymond,et al.  Dominant deuteron acceleration with a high-intensity laser for isotope production and neutron generation , 2013 .

[181]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[182]  S. V. Bulanov,et al.  Dependence of the ion energy on the parameters of the laser pulse and target in the radiation-pressure-dominated regime of acceleration , 2010 .

[183]  V. F. Kovalev,et al.  Analytic solutions to the Vlasov equations for expanding plasmas. , 2003, Physical review letters.

[184]  J. Allen,et al.  The expansion of a plasma into a vacuum , 1975, Journal of Plasma Physics.

[185]  M. Taguchi,et al.  Irradiation of single mammalian cells with a precise number of energetic heavy ions-Applications of microbeams for studying cellular radiation response , 2003 .

[186]  J. Koga,et al.  Tunable high-energy ion source via oblique laser pulse incident on a double-layer target. , 2007, Physical review letters.

[187]  Hirohiko Tsujii,et al.  Particle radiation therapy using proton and heavier ion beams. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[188]  Chao Gong,et al.  Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams , 2011, Nature Physics.

[189]  H. Paganetti,et al.  The risk of radiation-induced second cancers in the high to medium dose region: a comparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors , 2014, Physics in medicine and biology.

[190]  A. Andreev,et al.  Effect of a laser prepulse on fast ion generation in the interaction of ultra-short intense laser pulses with a limited-mass foil target , 2006 .

[191]  S. Kahaly,et al.  Short intense laser pulse collapse in near-critical plasma. , 2012, Physical review letters.

[192]  Gu,et al.  Forward ion acceleration in thin films driven by a high-intensity laser , 2000, Physical review letters.

[193]  Kevin M. Prise,et al.  DNA damage induction in dry and hydrated DNA by synchrotron radiation , 1999 .

[194]  Vladimir T. Tikhonchuk,et al.  Relativistic laser piston model: Ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses , 2009 .

[195]  D. Mathur,et al.  Asymmetric high-energy ion emission from argon clusters in intense laser fields. , 2001, Physical review letters.

[196]  Håkan Nyström,et al.  The role of protons in modern and biologically-guided radiotherapy , 2010, Acta oncologica.

[197]  Jens Limpert,et al.  The future is fibre accelerators , 2013, Nature Photonics.

[199]  Giuseppe Schettino,et al.  Biological effectiveness on live cells of laser driven protons at dose rates exceeding 109 Gy/s , 2012 .

[200]  Francesco Pegoraro,et al.  Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil , 1998 .

[201]  M. Borghesi,et al.  Properties of a plasma-based laser-triggered micro-lens , 2011 .

[202]  Jose R. Alonso,et al.  What will it take for laser driven proton accelerators to be applied to tumor therapy , 2007 .

[203]  Christoph H Keitel,et al.  Direct high-power laser acceleration of ions for medical applications. , 2008, Physical review letters.

[204]  Tabak,et al.  Absorption of ultra-intense laser pulses. , 1992, Physical review letters.

[205]  J. Allen,et al.  A note on ion rarefaction waves , 1970, Journal of Plasma Physics.

[206]  R Jeraj,et al.  The physical basis and future of radiation therapy. , 2011, The British journal of radiology.

[207]  Tae Jun Yu,et al.  Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses. , 2013, Physical review letters.

[208]  Z. Sheng,et al.  Electron acceleration by a short relativistic laser pulse at the front of solid targets. , 2000, Physical review letters.

[209]  Wei Luo,et al.  Particle selection and beam collimation system for laser-accelerated proton beam therapy. , 2005, Medical physics.

[210]  Joohwan Kim,et al.  Improved laser-to-proton conversion efficiency in isolated reduced mass targets , 2013 .

[211]  T. Tajima,et al.  Collective ion acceleration by a reflexing electron beam: model and scaling. Memorandum report , 1983 .

[212]  G Kraft,et al.  Tumortherapy with ion beams , 2000 .

[213]  P. Norreys,et al.  Dynamic control of laser-produced proton beams. , 2007, Physical review letters.

[214]  M. Kaluza,et al.  Plasma expansion into vacuum assuming a steplike electron energy distribution. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[215]  D. Hunting,et al.  Cross Sections for Low-Energy (10 – 50 eV) Electron Damage to DNA , 2002, Radiation research.

[216]  R. Kristal,et al.  Fast ions and hot electrons in the laser–plasma interaction , 1986 .

[217]  Kenneth W. D. Ledingham,et al.  Laser-driven particle and photon beams and some applications , 2010 .

[218]  Michael Bussmann,et al.  Laser accelerated protons captured and transported by a pulse power solenoid , 2011 .

[219]  Christoph H. Keitel,et al.  Acceleration of proton bunches by petawatt chirped radially polarized laser pulses , 2012 .

[220]  T. Kanai,et al.  Inactivation of Aerobic and Hypoxic Cells from Three Different Cell Lines by Accelerated 3He-, 12C- and 20Ne-Ion Beams , 2000, Radiation research.

[221]  Boris B. Kadomtsev,et al.  Reviews of Plasma Physics , 2012 .

[222]  Georg Korn,et al.  High-power γ-ray flash generation in ultraintense laser-plasma interactions. , 2011, Physical review letters.

[223]  Zulfikar Najmudin,et al.  Ultrahigh-intensity laser-produced plasmas as a compact heavy ion injection source , 2000 .

[224]  B. A. Ludewigt,et al.  Instrumentation for Treatment of Cancer Using Proton and Light-Ion Beams , 1993 .

[225]  F. Pegoraro,et al.  Computer Simulation of the Three-Dimensional Regime of Proton Acceleration in the Interaction of Laser Radiation with a Thin Spherical Target , 2001 .

[226]  C. Richter,et al.  A dosimetric system for quantitative cell irradiation experiments with laser-accelerated protons , 2011, Physics in medicine and biology.

[227]  Proton beams in radiotherapy , 1998 .

[228]  S. V. Bulanov,et al.  Feasibility of using laser ion accelerators in proton therapy , 2002 .

[229]  Eric Esarey,et al.  Ion acceleration from thin foil and extended plasma targets by slow electromagnetic wave and related ion-ion beam instability , 2012 .

[230]  H. Daido,et al.  Review of laser-driven ion sources and their applications , 2012, Reports on progress in physics. Physical Society.