Effects of manganese incorporation on the morphology, structure and cytotoxicity of spherical bioactive glass nanoparticles.

[1]  Francesca E Ciraldo,et al.  Tackling bioactive glass excessive in vitro bioreactivity: Preconditioning approaches for cell culture tests. , 2018, Acta biomaterialia.

[2]  W. Peukert,et al.  Synthesis and characterization of manganese containing mesoporous bioactive glass nanoparticles for biomedical applications , 2018, Journal of Materials Science: Materials in Medicine.

[3]  Julian R. Jones,et al.  In vitro osteogenesis by intracellular uptake of strontium containing bioactive glass nanoparticles. , 2018, Acta biomaterialia.

[4]  Julian R. Jones,et al.  Phosphate content affects structure and bioactivity of sol‐gel silicate bioactive glasses , 2017 .

[5]  Julian R. Jones,et al.  Sol–gel derived lithium-releasing glass for cartilage regeneration , 2017, Journal of biomaterials applications.

[6]  Dayang Wang,et al.  Unraveling the Growth Mechanism of Silica Particles in the Stöber Method: In Situ Seeded Growth Model. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[7]  J. Conradie,et al.  Significance of the electron-density of molecular fragments on the properties of manganese(III) β-diketonato complexes: an XPS and DFT study , 2017 .

[8]  Julian R. Jones,et al.  Lithium-silicate sol–gel bioactive glass and the effect of lithium precursor on structure–property relationships , 2016, Journal of Sol-Gel Science and Technology.

[9]  Julian R. Jones,et al.  Controlling particle size in the Stöber process and incorporation of calcium. , 2016, Journal of colloid and interface science.

[10]  Julian R. Jones,et al.  Monodispersed strontium containing bioactive glass nanoparticles and MC3T3-E1 cellular response , 2016 .

[11]  V. Kaichev,et al.  Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies. , 2015, Dalton transactions.

[12]  D. Vashaee,et al.  Effect of ion substitution on properties of bioactive glasses: A review , 2015 .

[13]  Julian R. Jones,et al.  A multinuclear solid state NMR spectroscopic study of the structural evolution of disordered calcium silicate sol-gel biomaterials. , 2015, Physical chemistry chemical physics : PCCP.

[14]  M. Stevens,et al.  Cotton-wool-like bioactive glasses for bone regeneration. , 2014, Acta biomaterialia.

[15]  A. Boccaccini,et al.  Is non-buffered DMEM solution a suitable medium for in vitro bioactivity tests? , 2014, Journal of materials chemistry. B.

[16]  J. Ferreira,et al.  Effects of Mn-doping on the structure and biological properties of β-tricalcium phosphate. , 2014, Journal of inorganic biochemistry.

[17]  G. Maina,et al.  In vitro study of manganese-doped bioactive glasses for bone regeneration. , 2014, Materials science & engineering. C, Materials for biological applications.

[18]  Anna Lukowiak,et al.  Bioactive glass nanoparticles obtained through sol-gel chemistry. , 2013, Chemical communications.

[19]  S. Honary,et al.  Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems - A Review (Part 2) , 2013 .

[20]  J. Nychka,et al.  Sol–Gel Synthesis of Bioactive Glass‐Ceramic 45S5 and its in vitro Dissolution and Mineralization Behavior , 2013 .

[21]  Julian R. Jones,et al.  Effect of calcium source on structure and properties of sol-gel derived bioactive glasses. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[22]  H. Kim,et al.  Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules. , 2012, Nanoscale.

[23]  M. Vallet‐Regí,et al.  Structural and in vitro study of cerium, gallium and zinc containing sol–gel bioactive glasses , 2012 .

[24]  Ashraf F. Ali,et al.  Fabrication and characterization of ZnO modified bioactive glass nanoparticles , 2012 .

[25]  J. Mano,et al.  Preparation and characterization of bioactive glass nanoparticles prepared by sol–gel for biomedical applications , 2011, Nanotechnology.

[26]  Raghu Raman Rajagopal,et al.  Influence of strontium on structure, sintering and biodegradation behaviour of CaO-MgO-SrO-SiO(2)-P(2)O(5)-CaF(2) glasses. , 2011, Acta biomaterialia.

[27]  A. U. Daniels,et al.  Bioactive glass nanoparticles with negative zeta potential , 2011 .

[28]  Aldo R Boccaccini,et al.  A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. , 2011, Biomaterials.

[29]  Molly M Stevens,et al.  Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro. , 2011, Biomaterials.

[30]  Andrea R. Gerson,et al.  Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn , 2010 .

[31]  E. Culea,et al.  The structural role of manganese ions in some zinc phosphate glasses and glass ceramics , 2010 .

[32]  M. Hochella,et al.  Use of XPS to identify the oxidation state of Mn in solid surfaces of filtration media oxide samples from drinking water treatment plants. , 2010, Environmental science & technology.

[33]  T. Nakano,et al.  Synthesis of Hydroxyapatite Contining Manganese and Its Evaluation of Biocompatibility , 2010 .

[34]  S. Moane,et al.  The effect of composition on ion release from Ca–Sr–Na–Zn–Si glass bone grafts , 2009, Journal of materials science. Materials in medicine.

[35]  B. Ratner,et al.  Differentiating calcium carbonate polymorphs by surface analysis techniques—an XPS and TOF‐SIMS study , 2008, Surface and interface analysis : SIA.

[36]  J. Nebe,et al.  Influence of manganese ions on cellular behavior of human osteoblasts in vitro. , 2007, Biomolecular engineering.

[37]  K. Dalby,et al.  Resolution of bridging oxygen signals from O 1s spectra of silicate glasses using XPS: Implications for O and Si speciation , 2007 .

[38]  Larry L. Hench,et al.  The story of Bioglass® , 2006, Journal of materials science. Materials in medicine.

[39]  A. Clearfield,et al.  Solid‐state NMR spectra of paramagnetic silica‐based materials: observation of 29Si and 27Al nuclei in the first coordination spheres of manganese ions , 2006, Magnetic resonance in chemistry : MRC.

[40]  J. Polak,et al.  Dose- and time-dependent effect of bioactive gel-glass ionic-dissolution products on human fetal osteoblast-specific gene expression. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[41]  G. Berthomé,et al.  Manganese Dioxides Surface Properties Studied by XPS and Gas Adsorption , 2004 .

[42]  M. Hupa,et al.  FTIR and XPS studies of bioactive silica based glasses , 2003 .

[43]  L. Hench,et al.  In vitro bioactivity of S520 glass fibers and initial assessment of osteoblast attachment. , 2003, Journal of biomedical materials research. Part A.

[44]  M. Salim,et al.  XPS study of transition metal doped silicate glasses , 1999 .

[45]  D. Banerjee,et al.  Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation , 1998 .

[46]  D. Muster,et al.  XPS study of some calcium compounds , 1995 .

[47]  H. Jain,et al.  Comparison of structure of alkali silicate glasses prepared by sol-gel and melt-quench methods , 1995 .

[48]  D. Avnir,et al.  Recommendations for the characterization of porous solids (Technical Report) , 1994 .

[49]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[50]  Larry L. Hench,et al.  Bonding mechanisms at the interface of ceramic prosthetic materials , 1971 .

[51]  Julian R. Jones,et al.  Hypoxia inducible factor-stabilizing bioactive glasses for directing mesenchymal stem cell behavior. , 2015, Tissue engineering. Part A.

[52]  Julian R. Jones,et al.  Monodispersed Bioactive Glass Submicron Particles and Their Effect on Bone Marrow and Adipose Tissue‐Derived Stem Cells , 2014, Advanced healthcare materials.

[53]  H. Mansur,et al.  Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications. , 2013, Biomedical materials.

[54]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[55]  K. Dalby,et al.  Bridging, non-bridging and free (O2–) oxygen in Na2O-SiO2 glasses: An X-ray Photoelectron Spectroscopic (XPS) and Nuclear Magnetic Resonance (NMR) study , 2011 .

[56]  C. Bianchi,et al.  Early stage reactivity and in vitro behavior of silica-based bioactive glasses and glass-ceramics , 2009, Journal of materials science. Materials in medicine.

[57]  Woo-Kul Lee,et al.  XPS Analysis on Chemical Properties of Calcium Phosphate Thin Films and Osteoblastic HOS Cell Responses , 2006 .

[58]  Herbert H. Clark,et al.  Bridging , 1975, TINLAP.

[59]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .