Multi-fidelity modeling and optimization of biogas plants

Graphical abstractDisplay Omitted HighlightsAccurate and fast simulation models mandatory for the optimization of biogas plants.Improve precision of simulation models without increasing the number of evaluations.Combining results: complex simulator, simple estimation-based model and surrogate model.Advantages and limitations of multi-fidelity modeling approaches are discussed. An essential task for operation and planning of biogas plants is the optimization of substrate feed mixtures. Optimizing the monetary gain requires the determination of the exact amounts of maize, manure, grass silage, and other substrates. For this purpose, accurate simulation models are mandatory, because the underlying biochemical processes are very slow. The simulation models may be time-consuming to evaluate, hence we show how to use surrogate-model-based approaches to optimize biogas plants efficiently. In detail, a Kriging surrogate is employed. To improve model quality of this surrogate, we integrate cheaply available data into the optimization process. To this end, multi-fidelity modeling methods like Co-Kriging are applied. Furthermore, a two-layered modeling approach is used to avoid deterioration of model quality due to discontinuities in the search space. At the same time, the cheaply available data is shown to be very useful for initialization of the employed optimization algorithms. Overall, we show how biogas plants can be efficiently modeled using data-driven methods, avoiding discontinuities as well as including cheaply available data. The application of the derived surrogate models to an optimization process is only partly successful. Given the same budget of function evaluations, the multi-fidelity approach outperforms the alternatives. However, due to considerable computational requirements, this advantage may not translate into a success with regards to overall computation time.

[1]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[2]  M. J. Box A New Method of Constrained Optimization and a Comparison With Other Methods , 1965, Comput. J..

[3]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[4]  R. Haftka,et al.  Multiple surrogates: how cross-validation errors can help us to obtain the best predictor , 2009 .

[5]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[6]  Ruichen Jin,et al.  On Sequential Sampling for Global Metamodeling in Engineering Design , 2002, DAC 2002.

[7]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[8]  Thomas Bartz-Beielstein,et al.  Design and Analysis of Optimization Algorithms Using Computational Statistics , 2004 .

[9]  Wolfgang Ponweiser,et al.  Multiobjective Optimization on a Limited Budget of Evaluations Using Model-Assisted -Metric Selection , 2008, PPSN.

[10]  Maarten Keijzer,et al.  Scaled Symbolic Regression , 2004, Genetic Programming and Evolvable Machines.

[11]  David Ardia,et al.  DEoptim: An R Package for Global Optimization by Differential Evolution , 2009 .

[12]  David L. F. Gaden Modelling anaerobic digesters in three dimensions: integration of biochemistry with computational fluid dynamics , 2013 .

[13]  R. Haftka Combining global and local approximations , 1991 .

[14]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[15]  A. Messac,et al.  Predictive quantification of surrogate model fidelity based on modal variations with sample density , 2015 .

[16]  Bernhard Wett,et al.  Population dynamics at digester overload conditions. , 2009, Bioresource technology.

[17]  R. Lewis,et al.  A MULTIGRID APPROACH TO THE OPTIMIZATION OF SYSTEMS GOVERNED BY DIFFERENTIAL EQUATIONS , 2000 .

[18]  Sankaran Mahadevan,et al.  Variable-fidelity model selection for stochastic simulation , 2014, Reliab. Eng. Syst. Saf..

[19]  Thomas Bartz-Beielstein,et al.  A Case Study on Multi-Criteria Optimization of an Event Detection Software under Limited Budgets , 2013, EMO.

[20]  Kenji Takeda,et al.  Multifidelity surrogate modeling of experimental and computational aerodynamic data sets , 2011 .

[21]  Thomas Bartz-Beielstein,et al.  Multi-criteria optimization for hard problems under limited budgets , 2012, GECCO '12.

[22]  Daniel Gaida,et al.  Dynamic real-time substrate feed optimization of anaerobic co-digestion plants , 2014 .

[23]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[24]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[25]  N. M. Alexandrov,et al.  A trust-region framework for managing the use of approximation models in optimization , 1997 .

[26]  Hirotaka Nakayama,et al.  Meta-Modeling in Multiobjective Optimization , 2008, Multiobjective Optimization.

[27]  Asif Islam,et al.  Variation of biogas production with different factors in poultry farms of Bangladesh , 2014, 2014 3rd International Conference on the Developments in Renewable Energy Technology (ICDRET).

[28]  Michael S. Eldred,et al.  Second-Order Corrections for Surrogate-Based Optimization with Model Hierarchies , 2004 .

[29]  A. Buswell,et al.  The mechanism of the methane fermentation. , 1952, Journal of the American Chemical Society.

[30]  John W. Bandler,et al.  Space mapping technique for electromagnetic optimization , 1994 .

[31]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[32]  Michael T. M. Emmerich,et al.  Hypervolume-based expected improvement: Monotonicity properties and exact computation , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[33]  Peter Salje Erneuerbare-Energien-Gesetz : Gesetz für den Vorrang erneuerbarer Energien (EEG) : Kommentar , 2005 .

[34]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[35]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[36]  Piotr Biernacki,et al.  Application of Anaerobic Digestion Model No. 1 for describing an existing biogas power plant , 2013 .

[37]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[38]  Bernard Yannou,et al.  Metamodeling of Combined Discrete/Continuous Responses , 2001 .

[39]  K. Gernaey,et al.  A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models. , 2015, Water research.

[40]  P. A. Newman,et al.  Optimization with variable-fidelity models applied to wing design , 1999 .

[41]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[42]  Alex J. Cannon Quantile regression neural networks: Implementation in R and application to precipitation downscaling , 2011, Comput. Geosci..

[43]  Irini Angelidaki,et al.  Application of anaerobic digestion modeling , 2004 .

[44]  Thomas Bartz-Beielstein,et al.  Optimization of biogas production with computational intelligence a comparative study , 2010, IEEE Congress on Evolutionary Computation.

[45]  Irini Angelidaki,et al.  Anaerobic Digestion Model (ADM1) , 2002 .

[46]  K. V. Price,et al.  Differential evolution: a fast and simple numerical optimizer , 1996, Proceedings of North American Fuzzy Information Processing.

[47]  Alexander I. J. Forrester,et al.  Multi-fidelity optimization via surrogate modelling , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  S. Grimberg,et al.  Modeling anaerobic digestion of dairy manure using the IWA Anaerobic Digestion Model no. 1 (ADM1). , 2008, Water science and technology : a journal of the International Association on Water Pollution Research.

[49]  Seán McLoone,et al.  Biogas plant optimization using Genetic Algorithms and Particle Swarm Optimization , 2008 .

[50]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[51]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[52]  John E. Renaud,et al.  Multilevel Variable Fidelity Optimization of a Morphing Unmanned Aerial Vehicle , 2004 .

[53]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[54]  Darko Vrečko,et al.  Multi-criteria analyses of wastewater treatment bio-processes under an uncertainty and a multiplicity of steady states. , 2012, Water research.

[55]  Tom Dhaene,et al.  Cost-efficient electromagnetic-simulation-driven antenna design using co-Kriging , 2012 .

[56]  Hirotaka Nakayama,et al.  10 Meta-Modeling in Multiobjective Optimization , 2008 .

[57]  Ramana V. Grandhi,et al.  Mixed-Variable Optimization Strategy Employing Multifidelity Simulation and Surrogate Models , 2010 .

[58]  J Keller,et al.  A review of ADM1 extensions, applications, and analysis: 2002-2005. , 2006, Water science and technology : a journal of the International Association on Water Pollution Research.