Random sampling from low-discrepancy sequences: applications to option pricing

A hybrid-Monte Carlo method and its applications to problems from option pricing are presented. The method, called random sampling from low-discrepancy sequences, enables the use of statistical tools to estimate the error in the context of low-discrepancy sequences. Numerical results are used to compare the method with conventional Monte Carlo and quasi-Monte Carlo methods, as well as the randomly shifted sequences.

[1]  Contributions to the Theory of Monte Carlo and Quasi-Monte Carlo Methods , 1999 .

[2]  K. S. Tan,et al.  Quasi-Monte Carlo Methods in Numerical Finance , 1996 .

[3]  R. Cranley,et al.  Randomization of Number Theoretic Methods for Multiple Integration , 1976 .

[4]  Ralph B. D'Agostino,et al.  Goodness-of-Fit-Techniques , 2020 .

[5]  Makoto Matsumoto,et al.  Twisted GFSR generators II , 1994, TOMC.

[6]  Giray Ökten High dimensional simulation , 2001 .

[7]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[8]  Gilles Pagès,et al.  Sequences with low discrepancy and pseudo-random numbers:theoretical results and numerical tests , 1997 .

[9]  Art B. Owen,et al.  Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.

[10]  Harald Niederreiter,et al.  Implementation and tests of low-discrepancy sequences , 1992, TOMC.

[11]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[12]  Les Clewlow,et al.  Implementing derivatives models , 1998 .

[13]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo Method , 1981 .

[14]  Tuffin Bruno On the use of low discrepancy sequences in Monte Carlo methods , 1996 .

[15]  Fred J. Hickernell,et al.  Randomized Halton sequences , 2000 .

[16]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[17]  E. Hlawka,et al.  The theory of uniform distribution , 1984 .

[18]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[19]  Giray Ökten,et al.  A Probabilistic Result on the Discrepancy of a Hybrid-Monte Carlo Sequence and Applications , 1996, Monte Carlo Methods Appl..

[20]  H. Faure Good permutations for extreme discrepancy , 1992 .

[21]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.