Recent progress of on-resin cyclization for the synthesis of clycopeptidomimetics

Abstract Cyclopeptidomimetics are class of cyclopeptides with unnatural linkage. They usually displayed unique constrained structure, enhanced proteolytic stability, and other drug-like character; and have been widely used in medicinal chemistry. Therefore, development of efficient strategies for the synthesis of cyclopeptidomimetics has received many attentions. On-resin cyclization strategy is one of the effective approaches developed to overcome the competing side reaction such as oligomerization and cyclooligomers occurred in solution cyclization. This approach took advantage of the “pseudo-dilution” effect to avoid these undesired by-products and greatly simplified the downstream product purification process. This review summarized the recent on-resin peptide cyclization strategies for the synthesis of cyclopeptidomimetics.

[1]  L. Feliu,et al.  Solid-Phase Synthesis of Biaryl Cyclic Peptides Containing a 3-Aryltyrosine , 2012 .

[2]  K. Anseth,et al.  Thiol-ene and photo-cleavage chemistry for controlled presentation of biomolecules in hydrogels. , 2015, Journal of controlled release : official journal of the Controlled Release Society.

[3]  J. Moses,et al.  The growing applications of click chemistry. , 2007, Chemical Society reviews.

[4]  J. Cornish,et al.  Synthesis and evaluation of disulfide bond mimetics of amylin-(1-8) as agents to treat osteoporosis. , 2012, Bioorganic & medicinal chemistry.

[5]  K. Burgess,et al.  Syntheses and Activities of New C10 β-Turn Peptidomimetics , 2004 .

[6]  Ian Collins,et al.  Macrocycles in new drug discovery. , 2012, Future medicinal chemistry.

[7]  Andrei K. Yudin,et al.  Macrocycles: lessons from the distant past, recent developments, and future directions , 2014, Chemical science.

[8]  S. Luis,et al.  Macrocyclization Reactions: The Importance of Conformational, Configurational, and Template-Induced Preorganization. , 2015, Chemical reviews.

[9]  Peter S. Kutchukian,et al.  Introduction of all-hydrocarbon i,i+3 staples into alpha-helices via ring-closing olefin metathesis. , 2010, Organic letters.

[10]  Ludger A. Wessjohann,et al.  What can a chemist learn from nature’s macrocycles? – A brief, conceptual view , 2005, Molecular Diversity.

[11]  刘清,et al.  巯基-烯/炔点击化学研究进展 , 2012 .

[12]  F. Albericio,et al.  CuAAC: An Efficient Click Chemistry Reaction on Solid Phase. , 2016, ACS combinatorial science.

[13]  L. Feliu,et al.  Solid-phase synthesis of biaryl cyclic peptides by borylation and microwave-assisted intramolecular Suzuki–Miyaura reaction , 2011 .

[14]  J. Vederas,et al.  Multiple on-resin olefin metathesis to form ring-expanded analogues of the lantibiotic peptide, lacticin 3147 A2. , 2007, Organic letters.

[15]  Michael C. Giano,et al.  Application of ring‐closing metathesis to Grb2 SH3 domain‐binding peptides , 2011, Biopolymers.

[16]  Giovanni Sorba,et al.  Click chemistry reactions in medicinal chemistry: Applications of the 1,3‐dipolar cycloaddition between azides and alkynes , 2008, Medicinal research reviews.

[17]  April M. Kloxin,et al.  Thiol-ene click hydrogels for therapeutic delivery. , 2016, ACS biomaterials science & engineering.

[18]  C. van Nostrum,et al.  Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies. , 2009, Bioconjugate chemistry.

[19]  M. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001 .

[20]  C. Bewley,et al.  Synthesis of novel cyclic NGR/RGD peptide analogs via on resin click chemistry. , 2010, Bioorganic & medicinal chemistry letters.

[21]  G. Maayan,et al.  A Facile Strategy for the Construction of Cyclic Peptoids under Microwave Irradiation through a Simple Substitution Reaction. , 2015, Organic letters.

[22]  A. Nefzi,et al.  Parallel synthesis of 19-membered ring macro-heterocycles via intramolecular thioether formation , 2010 .

[23]  Reto Stöcklin,et al.  Anti‐microbial peptides: from invertebrates to vertebrates , 2004, Immunological reviews.

[24]  L. Blyn,et al.  New inhibitors of bacterial protein synthesis from a combinatorial library of macrocycles. , 2002, Journal of medicinal chemistry.

[25]  Christopher J. White,et al.  Contemporary strategies for peptide macrocyclization. , 2011, Nature chemistry.

[26]  Jeffrey,et al.  Improvement of oral peptide bioavailability: Peptidomimetics and prodrug strategies. , 1997, Advanced drug delivery reviews.

[27]  K. Burgess,et al.  SNAr Cyclizations To Form Cyclic Peptidomimetics of β-Turns , 1998 .

[28]  N. Sewald,et al.  An improved method for the solution cyclization of peptides under pseudo-high dilution conditions. , 2004, Journal of biotechnology.

[29]  R. Lokey,et al.  Click chemistry as a macrocyclization tool in the solid-phase synthesis of small cyclic peptides. , 2007, Organic letters.

[30]  Stephen P. Hale,et al.  The exploration of macrocycles for drug discovery — an underexploited structural class , 2008, Nature Reviews Drug Discovery.

[31]  M. Giulianotti,et al.  Efficient approach for the diversity-oriented synthesis of macro-heterocycles on solid-support , 2003 .

[32]  R. Grubbs,et al.  Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. , 2010, Chemical reviews.

[33]  K. Anseth,et al.  On-resin peptide macrocyclization using thiol-ene click chemistry. , 2010, Chemical communications.

[34]  A. Kakkar,et al.  "Click" methodologies: efficient, simple and greener routes to design dendrimers. , 2010, Chemical Society reviews.

[35]  Y. Kiso,et al.  Macrocyclization on solid support using Heck reaction , 1997 .

[36]  P. Dawson,et al.  On resin side-chain cyclization of complex peptides using CuAAC. , 2011, Organic letters.

[37]  J. Rebek,et al.  Organic chemistry on the solid phase. Site-site interactions on functionalized polystyrene , 1977 .

[38]  R. Zhuo,et al.  Supramolecular architectures self-assembled from asymmetrical hetero cyclopeptides. , 2011, Macromolecular rapid communications.

[39]  P. Coric,et al.  On-resin cyclization of peptide ligands of the Vascular Endothelial Growth Factor Receptor 1 by copper(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition. , 2007, Bioorganic & medicinal chemistry letters.

[40]  G. Byk,et al.  Fast and versatile microwave-assisted intramolecular Heck reaction in peptide macrocyclization using microwave energy. , 2006, Biopolymers.

[41]  É. Marsault,et al.  Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. , 2011, Journal of medicinal chemistry.

[42]  C. Soto,et al.  Converting a peptide into a drug: strategies to improve stability and bioavailability. , 2002, Current medicinal chemistry.

[43]  D. Rijkers Synthesis of Cyclic Peptides and Peptidomimetics by Metathesis Reactions , 2015 .

[44]  L. Gentilucci,et al.  Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. , 2010, Current pharmaceutical design.

[45]  B. Helm,et al.  Solid-phase synthesis of an A-B loop mimetic of the Cepsilon3 domain of human IgE: macrocyclization by Sonogashira coupling. , 2003, The Journal of organic chemistry.

[46]  Michael Malkoch,et al.  Simplifying the synthesis of dendrimers: accelerated approaches. , 2012, Chemical Society reviews.

[47]  K. Burgess,et al.  Resin effects in solid phase SNAr and SN2 macrocyclizations , 2000 .

[48]  T. F. Murray,et al.  Design, synthesis, and pharmacological activities of dynorphin A analogues cyclized by ring-closing metathesis. , 2009, Journal of medicinal chemistry.

[49]  M. Meldal,et al.  High Capacity Poly(ethylene glycol) Based Amino Polymers for Peptide and Organic Synthesis , 2004 .

[50]  James C. Collins,et al.  Emac – a comparative index for the assessment of macrocyclization efficiency , 2012 .

[51]  J. Vederas,et al.  Synthesis of the lantibiotic lactocin S using peptide cyclizations on solid phase. , 2010, Journal of the American Chemical Society.

[52]  M. A. Walter,et al.  1,2,3-Triazoles as amide bond mimics: triazole scan yields protease-resistant peptidomimetics for tumor targeting. , 2013, Angewandte Chemie.

[53]  Peter S. Kutchukian,et al.  Stitched α-helical peptides via bis ring-closing metathesis. , 2014, Journal of the American Chemical Society.

[54]  M. Finn,et al.  Head-to-tail peptide cyclodimerization by copper-catalyzed azide-alkyne cycloaddition. , 2005, Angewandte Chemie.

[55]  P. Roller,et al.  Recent Progress of Synthetic Studies to Peptide and Peptidomimetic Cyclization , 2008 .

[56]  Demei Tian,et al.  Efficient synthesis of water-soluble calix[4]arenes via thiol-ene “click” chemistry , 2013 .

[57]  S. Aimoto,et al.  Synthesis of cyclic RGD derivatives via solid phase macrocyclization using the Heck reaction , 2001 .

[58]  K. Kirshenbaum,et al.  Peptide cyclization and cyclodimerization by Cu(I)-mediated azide-alkyne cycloaddition. , 2009, The Journal of organic chemistry.

[59]  L. Blyn,et al.  Antibacterial activity of quinolone-macrocycle conjugates. , 2003, Bioorganic & medicinal chemistry letters.

[60]  R. Borchardt,et al.  How structural features influence the biomembrane permeability of peptides. , 1996, Journal of pharmaceutical sciences.

[61]  David S Goodsell,et al.  1,2,3‐Triazole as a Peptide Surrogate in the Rapid Synthesis of HIV‐1 Protease Inhibitors , 2005, Chembiochem : a European journal of chemical biology.

[62]  K. Anseth,et al.  Synthesis of cyclic, multivalent Arg-Gly-Asp using sequential thiol-ene/thiol-yne photoreactions. , 2010, Chemical communications.

[63]  Morten Meldal,et al.  Cu-catalyzed azide-alkyne cycloaddition. , 2008, Chemical reviews.