An Unusual 3D Autonomous Quadratic Chaotic System with Two Stable Node-Foci

This paper reports the finding of an unusual three-dimensional autonomous quadratic Lorenz-like chaotic system which, surprisingly, has two stable node-type of foci as its only equilibria. The new system contains the diffusionless Lorenz system and the Burke–Shaw system, and some others, as special cases. The algebraic form of the new chaotic system is similar to the other Lorenz-type systems, but they are topologically nonequivalent. To further analyze the new system, some dynamical behaviors such as Hopf bifurcation and singularly degenerate heteroclinic and homoclinic orbits, are rigorously proved with simulation verification. Moreover, it is proved that the new system with some specified parameter values has Silnikov-type homoclinic and heteroclinic chaos.

[1]  Guanrong Chen,et al.  Ši’lnikov Chaos in the Generalized Lorenz Canonical Form of Dynamical Systems , 2005 .

[2]  Jianming Zhang,et al.  New Treatment on Bifurcations of Periodic Solutions and Homoclinic Orbits at High r in the Lorenz Equations , 1993, SIAM J. Appl. Math..

[3]  Hiroshi Kokubu,et al.  Existence of a Singularly Degenerate Heteroclinic Cycle in the Lorenz System and Its Dynamical Consequences: Part I , 2004 .

[4]  Leo R. M. Maas,et al.  The diffusionless Lorenz equations; Shil'nikov bifurcations and reduction to an explicit map , 2000 .

[5]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[6]  Bernd Krauskopf,et al.  Global bifurcations of the Lorenz manifold , 2006 .

[7]  Philip Holmes,et al.  Homoclinic orbits in slowly varying oscillators , 1987 .

[8]  Guanrong Chen,et al.  A Unified Lorenz-Type System and its Canonical Form , 2006, Int. J. Bifurc. Chaos.

[9]  Qigui Yang,et al.  A Chaotic System with One saddle and Two Stable Node-Foci , 2008, Int. J. Bifurc. Chaos.

[10]  Colin Sparrow,et al.  The Lorenz equations , 1982 .

[11]  O. Rössler An equation for continuous chaos , 1976 .

[12]  Nikolay K. Vitanov,et al.  Analytical and numerical investigation of two families of Lorenz-like dynamical systems , 2007 .

[13]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[14]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[16]  Qigui Yang,et al.  Chaotic attractors of the Conjugate Lorenz-Type System , 2007, Int. J. Bifurc. Chaos.

[17]  Qigui Yang,et al.  Constructing a new chaotic system based on the S̆ilnikov criterion , 2004 .

[18]  Julien Clinton Sprott,et al.  Simple chaotic systems and circuits , 2000 .

[19]  Bernd Krauskopf,et al.  A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits , 2008 .

[20]  Divakar Viswanath,et al.  Symbolic dynamics and periodic orbits of the Lorenz attractor* , 2003 .

[21]  J. Sprott Chaos and time-series analysis , 2001 .

[22]  Guanrong Chen,et al.  Complex Dynamical Behaviors of the Chaotic Chen's System , 2003, Int. J. Bifurc. Chaos.

[23]  Debin Huang Periodic orbits and homoclinic orbits of the diffusionless Lorenz equations , 2003 .

[24]  Julien Clinton Sprott,et al.  A new class of chaotic circuit , 2000 .

[25]  Christophe Letellier,et al.  Evolution of a multimodal map induced by an equivariant vector field , 1996 .