Temperature, Oxygen, and Salt-Sensing Neurons in C. elegans Are Carbon Dioxide Sensors that Control Avoidance Behavior

[1]  H. Davenport Carbonic anhydrase in the nervous system. , 1946, Journal of neurophysiology.

[2]  R. L. Russell,et al.  Chemotaxis-defective mutants of the nematode Caenorhabditis elegans. , 1975, Genetics.

[3]  S. Ward,et al.  Electron microscopical reconstruction of the anterior sensory anatomy of the nematode caenorhabditis elegans , 1975, The Journal of comparative neurology.

[4]  R. L. Russell,et al.  Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Y. Ridderstråle,et al.  Histochemical study of the distribution of carbonic anhydrase in the cat brain. , 1985, Acta physiologica Scandinavica.

[6]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[7]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[8]  Cori Bargmann,et al.  Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans , 1991, Neuron.

[9]  V. Ambros,et al.  Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. , 1991, The EMBO journal.

[10]  I. Mori,et al.  Neural regulation of thermotaxis in Caenorhabditis elegans , 1995, Nature.

[11]  Cori Bargmann,et al.  A Putative Cyclic Nucleotide–Gated Channel Is Required for Sensory Development and Function in C. elegans , 1996, Neuron.

[12]  Ikue Mori,et al.  Mutations in a Cyclic Nucleotide–Gated Channel Lead to Abnormal Thermosensation and Chemosensation in C. elegans , 1996, Neuron.

[13]  L. Avery,et al.  Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[14]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[15]  R. Smith,et al.  Identification of carbonic anhydrase activity in bullfrog olfactory receptor neurons: histochemical localization and role in CO2 chemoreception , 1998, Journal of Comparative Physiology A.

[16]  H. Horvitz,et al.  The C. elegans Protein EGL-1 Is Required for Programmed Cell Death and Interacts with the Bcl-2–like Protein CED-9 , 1998, Cell.

[17]  Cori Bargmann,et al.  Natural Variation in a Neuropeptide Y Receptor Homolog Modifies Social Behavior and Food Response in C. elegans , 1998, Cell.

[18]  E. Jorgensen,et al.  One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction , 1999, Nature Neuroscience.

[19]  E. Jorgensen,et al.  UNC-13 is required for synaptic vesicle fusion in C. elegans , 1999, Nature Neuroscience.

[20]  Rajesh Ranganathan,et al.  C. elegans Locomotory Rate Is Modulated by the Environment through a Dopaminergic Pathway and by Experience through a Serotonergic Pathway , 2000, Neuron.

[21]  E. Honoré,et al.  An oxygen‐, acid‐ and anaesthetic‐sensitive TASK‐like background potassium channel in rat arterial chemoreceptor cells , 2000, The Journal of physiology.

[22]  J. Satterlee,et al.  Specification of Thermosensory Neuron Fate in C. elegans Requires ttx-1, a Homolog of otd/Otx , 2001, Neuron.

[23]  Cori Bargmann,et al.  The Cyclic GMP-Dependent Protein Kinase EGL-4 Regulates Olfactory Adaptation in C. elegans , 2002, Neuron.

[24]  R. Hustert,et al.  Evidence for oxygen and carbon dioxide receptors in insect CNS influencing ventilation. , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[25]  O. Hobert,et al.  Left–right asymmetry in the nervous system: the Caenorhabditis elegans model , 2002, Nature Reviews Neuroscience.

[26]  G. Richerson,et al.  Quantification of the response of rat medullary raphe neurones to independent changes in pHo and PCO2 , 2002, The Journal of physiology.

[27]  Mario de Bono,et al.  Antagonistic pathways in neurons exposed to body fluid regulate social feeding in Caenorhabditis elegans , 2002, Nature.

[28]  M. Labouesse [Caenorhabditis elegans]. , 2003, Medecine sciences : M/S.

[29]  J. Feldman,et al.  Breathing: rhythmicity, plasticity, chemosensitivity. , 2003, Annual review of neuroscience.

[30]  Y. Ohshima,et al.  The C. elegans che-1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons , 2003, Development.

[31]  S. Lahiri,et al.  CO2/H(+) sensing: peripheral and central chemoreception. , 2003, The international journal of biochemistry & cell biology.

[32]  Aravinthan D. T. Samuel,et al.  Identification of Thermosensory and Olfactory Neuron-Specific Genes via Expression Profiling of Single Neuron Types , 2004, Current Biology.

[33]  David J. Anderson,et al.  A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila , 2004, Nature.

[34]  Kyuhyung Kim,et al.  Expression and regulation of an FMRFamide‐related neuropeptide gene family in Caenorhabditis elegans , 2004, The Journal of comparative neurology.

[35]  W. Ryu,et al.  The CMK-1 CaMKI and the TAX-4 Cyclic Nucleotide-Gated Channel Regulate Thermosensory Neuron Gene Expression and Function in C. elegans , 2004, Current Biology.

[36]  David E Hill,et al.  A first version of the Caenorhabditis elegans Promoterome. , 2004, Genome research.

[37]  G. Richerson,et al.  Serotonergic neurons as carbon dioxide sensors that maintain ph homeostasis , 2004, Nature Reviews Neuroscience.

[38]  Koutarou D. Kimura,et al.  The C. elegans Thermosensory Neuron AFD Responds to Warming , 2004, Current Biology.

[39]  Cornelia I. Bargmann,et al.  Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue , 2004, Nature.

[40]  Elizabeth M. Boon,et al.  Ligand discrimination in soluble guanylate cyclase and the H-NOX family of heme sensor proteins. , 2005, Current opinion in chemical biology.

[41]  T. Bradley,et al.  Insects breathe discontinuously to avoid oxygen toxicity , 2005, Nature.

[42]  R. Kerr,et al.  In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents , 2005, The EMBO journal.

[43]  Chun Jiang,et al.  CO2 central chemosensitivity: why are there so many sensing molecules? , 2005, Respiratory Physiology & Neurobiology.

[44]  G. Richerson,et al.  Homing in on the specific phenotype(s) of central respiratory chemoreceptors. , 2005, Experimental physiology.

[45]  F. Lehmann,et al.  Unconventional mechanisms control cyclic respiratory gas release in flying Drosophila , 2005, Journal of Experimental Biology.

[46]  Damon A. Clark,et al.  The AFD Sensory Neurons Encode Multiple Functions Underlying Thermotactic Behavior in Caenorhabditis elegans , 2006, The Journal of Neuroscience.

[47]  R. Kerr,et al.  Intracellular Ca2+ imaging in C. elegans. , 2006, Methods in molecular biology.

[48]  S. Lockery,et al.  Searching for Neuronal Left/Right Asymmetry: Genomewide Analysis of Nematode Receptor-Type Guanylyl Cyclases , 2006, Genetics.

[49]  Hitoshi Inada,et al.  Identification of Guanylyl Cyclases That Function in Thermosensory Neurons of Caenorhabditis elegans , 2006, Genetics.

[50]  Suzanne Rademakers,et al.  Antagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans , 2006, The EMBO journal.

[51]  Manfred Forstreuter,et al.  Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context , 2006, Journal of Experimental Biology.

[52]  John R. Carlson,et al.  The molecular basis of CO2 reception in Drosophila , 2007, Proceedings of the National Academy of Sciences.

[53]  Steven J. M. Jones,et al.  The molecular signature and cis-regulatory architecture of a C. elegans gustatory neuron. , 2007, Genes & development.

[54]  Janet M. Young,et al.  Degeneration of the Olfactory Guanylyl Cyclase D Gene during Primate Evolution , 2007, PloS one.

[55]  L. Vosshall,et al.  Molecular architecture of smell and taste in Drosophila. , 2007, Annual review of neuroscience.

[56]  Kristin Scott,et al.  The detection of carbonation by the Drosophila gustatory system , 2007, Nature.

[57]  Minmin Luo,et al.  Detection of Near-Atmospheric Concentrations of CO2 by an Olfactory Subsystem in the Mouse , 2007, Science.

[58]  Lars Fugger,et al.  Control of hypothalamic orexin neurons by acid and CO2 , 2007, Proceedings of the National Academy of Sciences.

[59]  David J. Anderson,et al.  Light Activation of an Innate Olfactory Avoidance Response in Drosophila , 2007, Current Biology.

[60]  E. Jorgensen,et al.  UNC-31 (CAPS) Is Required for Dense-Core Vesicle But Not Synaptic Vesicle Exocytosis in Caenorhabditis elegans , 2007, The Journal of Neuroscience.

[61]  Damon A. Clark,et al.  Temporal Activity Patterns in Thermosensory Neurons of Freely Moving Caenorhabditis elegans Encode Spatial Thermal Gradients , 2007, The Journal of Neuroscience.

[62]  Leslie B. Vosshall,et al.  Two chemosensory receptors together mediate carbon dioxide detection in Drosophila , 2007, Nature.

[63]  Subhajyoti De,et al.  Dopamine Mediates Context-Dependent Modulation of Sensory Plasticity in C. elegans , 2007, Neuron.

[64]  S. Lockery,et al.  Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis , 2008, Nature.

[65]  Mario de Bono,et al.  A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans , 2008, Proceedings of the National Academy of Sciences.

[66]  Paul W. Sternberg,et al.  Acute carbon dioxide avoidance in Caenorhabditis elegans , 2008, Proceedings of the National Academy of Sciences.

[67]  J. Sznajder,et al.  Elevated CO2 levels affect development, motility, and fertility and extend life span in Caenorhabditis elegans , 2009, Proceedings of the National Academy of Sciences.

[68]  Matthew A. Howard,et al.  The Amygdala Is a Chemosensor that Detects Carbon Dioxide and Acidosis to Elicit Fear Behavior , 2009, Cell.

[69]  Kazushi Yoshida,et al.  Parallel Use of Two Behavioral Mechanisms for Chemotaxis in Caenorhabditis elegans , 2009, The Journal of Neuroscience.

[70]  Anandasankar Ray,et al.  Modification of CO2 avoidance behaviour in Drosophila by inhibitory odorants , 2009, Nature.

[71]  M. D. Bono,et al.  Natural variation in a neural globin tunes oxygen sensing in wild Caenorhabditis elegans , 2009, Nature.

[72]  Navin Pokala,et al.  Neurons Detect Increases and Decreases in Oxygen Levels Using Distinct Guanylate Cyclases , 2009, Neuron.

[73]  Minmin Luo,et al.  Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate , 2009, Proceedings of the National Academy of Sciences.

[74]  Jayaram Chandrashekar,et al.  The Taste of Carbonation , 2009, Science.

[75]  E. Flemetakis,et al.  Molecular and biochemical analysis of the α class carbonic anhydrases in Caenorhabditis elegans , 2010, Molecular Biology Reports.

[76]  S. Lockery,et al.  Lateralized Gustatory Behavior of C. elegans Is Controlled by Specific Receptor-Type Guanylyl Cyclases , 2009, Current Biology.

[77]  G. Whitesides,et al.  Soft lithography for micro- and nanoscale patterning , 2010, Nature Protocols.

[78]  G. Richerson,et al.  Central serotonin neurons are required for arousal to CO2 , 2010, Proceedings of the National Academy of Sciences.

[79]  C. Supuran,et al.  Characterization of the first beta-class carbonic anhydrase from an arthropod (Drosophila melanogaster) and phylogenetic analysis of beta-class carbonic anhydrases in invertebrates , 2010, BMC Biochemistry.