Growth and photoluminescence studies of Al-rich AlN∕AlxGa1−xN quantum wells

Both a-plane and c-plane AlN∕Al0.65Ga0.35N quantum wells (QWs) have been grown by metal organic chemical vapor deposition and their photoluminescence (PL) emission properties were studied and compared. It was found that the low temperature PL characteristics of a-plane QWs are primarily governed by the quantum size effect, whereas those of c-plane QWs are significantly affected by the polarization fields. The PL decay time was found to be only weakly dependent on the well width Lw for a-plane QWs, whereas a strong dependence of the PL decay time on Lw was observed for c-plane QWs. Moreover, Lw dependence studies also revealed that structures with Lw>2nm and Lw≈2nm provide highest emission efficiency in a-plane and c-plane AlN∕Al0.65Ga0.35N QWs, respectively.

[1]  Hongxing Jiang,et al.  Exciton localization in AlGaN alloys , 2006 .

[2]  Stephan W Koch,et al.  Microscopic theory of optical nonlinearities and spontaneous emission lifetime in group-III nitride quantum wells , 1999 .

[3]  C. Chen,et al.  Internal polarization fields in GaN∕AlGaN multiple quantum wells with different crystallographic orientations , 2005 .

[4]  S. Denbaars,et al.  Optical evidence for lack of polarization in (112¯0) oriented GaN∕(AlGa)N quantum structures , 2005 .

[5]  Shun Lien Chuang,et al.  Piezoelectric effects on electrical and optical properties of wurtzite GaN/AlGaN quantum well lasers , 1998 .

[6]  Jun Li,et al.  Time-resolved photoluminescence studies of AlxGa1−xN alloys , 2000 .

[7]  A. Carlo,et al.  Well-width dependence of the ground level emission of GaN/AlGaN quantum wells , 2000 .

[8]  Hongxing Jiang,et al.  Linewidths of excitonic luminescence transitions in AlGaN alloys , 2001 .

[9]  Charles Howard Henry,et al.  Measurement of gain and absorption spectra in AlGaAs buried heterostructure lasers , 1980 .

[10]  V. Dierolf,et al.  Enhanced room-temperature luminescence efficiency through carrier localization in AlxGa1−xN alloys , 2005 .

[11]  James S. Speck,et al.  Structural characterization of nonpolar (112̄0) a-plane GaN thin films grown on (11̄02) r-plane sapphire , 2002 .

[12]  Manijeh Razeghi,et al.  4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes , 2003 .

[13]  M. Asif Khan,et al.  Micro-pixel Design Milliwatt Power 254 nm Emission Light Emitting Diodes , 2004 .

[14]  H. Hirayama,et al.  Efficient 230–280 nm emission from high-Al-content AlGaN-based multiquantum wells , 2002 .

[15]  S. Nakamura,et al.  Spontaneous emission of localized excitons in InGaN single and multiquantum well structures , 1996 .

[16]  Jin Wang,et al.  Piezoelectric effect on optical properties of pseudomorphically strained wurtzite GaN quantum wells , 1997, IEEE Photonics Technology Letters.

[17]  J. Im,et al.  Reduction of oscillator strength due to piezoelectric fields in G a N / A l x Ga 1 − x N quantum wells , 1998 .

[18]  J. Lin,et al.  Well-width dependence of the quantum efficiencies of GaN/AlxGa1−xN multiple quantum wells , 2000 .

[19]  Shuji Nakamura,et al.  292 nm AlGaN Single-Quantum Well Light Emitting Diodes Grown on Transparent AlN Base , 2003 .

[20]  H. M. Ng,et al.  Molecular-beam epitaxy of GaN/AlxGa1−xN multiple quantum wells on R-plane (101̄2) sapphire substrates , 2002 .

[21]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[22]  Grigory Simin,et al.  Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm , 2002 .

[23]  B. Gayral,et al.  Optical properties of GaN quantum dots grown on nonpolar (11-20) SiC by molecular-beam epitaxy , 2005 .

[24]  Mim Lal Nakarmi,et al.  Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys , 2005 .

[25]  J. Lin,et al.  Excitonic luminescence linewidths in AlGaN alloys with high aluminum concentrations , 2002 .

[26]  M. Asif Khan,et al.  High-efficiency 269 nm emission deep ultraviolet light-emitting diodes , 2004 .

[27]  Robert Kaplar,et al.  Room-temperature direct current operation of 290 nm light-emitting diodes with milliwatt power levels , 2004 .