Complexity and stable evolution of circuits

We consider the viability problem for random dynamical systems, in particular, for circuits. A system is viable only if the system state stays in a prescribed domain Π of a phase space. We assume that the circuit structure is coded by a code evolving in time. We introduce the notion of stable evolution of the code and the system: evolution is stable if there is a δ > 0 such that the probability PT to be in Π within time interval [0, T ] satisfies PT > δ as T →∞. We show that for certain large classes of systems, the stable evolution has the following fundamental property: the Kolmogorov complexity of the code cannot be bounded by a constant as time t → ∞. For circuit models, we describe examples of stable evolution of complicated boolean networks for a difficult case when the domain Π is unknown. We dedicate this paper to Professor Grisha Mints. We admire the breadth of his interests.

[1]  Geoff Oxford,et al.  Evolution (2nd edn): by Monroe W. Strickberger Jones and Bartlett, 1995. £19.95 pbk (xiii + 670 pages) ISBN 0 86720 892 9 , 1996 .

[2]  Leslie G. Valiant,et al.  Evolvability , 2009, JACM.

[3]  Serge Vakulenko Complexité dynamique des réseaux de Hopfield , 2002 .

[4]  L. Arnold Random Dynamical Systems , 2003 .

[5]  D. A. Baxter,et al.  Mathematical Modeling of Gene Networks , 2000, Neuron.

[6]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[7]  B. Bollobás The evolution of random graphs , 1984 .

[8]  Claude Lobry,et al.  Une propriété générique des couples de champs de vecteurs , 1972 .

[9]  Manuel Blum,et al.  A Machine-Independent Theory of the Complexity of Recursive Functions , 1967, JACM.

[10]  David H. Sharp,et al.  A connectionist model of development. , 1991, Journal of theoretical biology.

[11]  Dimitris Achlioptas,et al.  Lower bounds for random 3-SAT via differential equations , 2001, Theor. Comput. Sci..

[12]  Denis Thieffry,et al.  Dynamical behaviour of biological regulatory networks—II. Immunity control in bacteriophage lambda , 1995 .

[13]  D. Grigoriev DEVIATION THEOREMS FOR SOLUTIONS OF LINEAR ORDINARY DIFFERENTIAL EQUATIONS AND APPLICATIONS TO PARALLEL COMPLEXITY OF SIGMOIDS , 2007 .

[14]  A. Gabrielov,et al.  Complexity of computations with Pfaffian and Noetherian functions , 2004 .

[15]  D. A. Baxter,et al.  Modeling transcriptional control in gene networks—methods, recent results, and future directions , 2000, Bulletin of mathematical biology.

[16]  G. Zajicek,et al.  The Wisdom of the Body , 1934, Nature.

[17]  William I. Gasarch,et al.  Book Review: An introduction to Kolmogorov Complexity and its Applications Second Edition, 1997 by Ming Li and Paul Vitanyi (Springer (Graduate Text Series)) , 1997, SIGACT News.

[18]  M. Mézard,et al.  Threshold values of random K-SAT from the cavity method , 2006 .

[19]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[20]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, CACM.

[21]  A. Lesne Complex Networks: from Graph Theory to Biology , 2006 .

[22]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[23]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[24]  Cristopher Moore,et al.  Closed-for Analytic Maps in One and Two Dimensions can Simulate Universal Turing Machines , 1999, Theor. Comput. Sci..

[25]  Paul M. B. Vitányi,et al.  An Introduction to Kolmogorov Complexity and Its Applications, Third Edition , 1997, Texts in Computer Science.

[26]  M. Gromov,et al.  Mathematical slices of molecular biology , 2001 .

[27]  R. Thomas,et al.  Dynamical behaviour of biological regulatory networks--II. Immunity control in bacteriophage lambda. , 1995, Bulletin of mathematical biology.

[28]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[29]  Ronald L. Rivest,et al.  Introduction to Algorithms, Second Edition , 2001 .

[30]  Rabi Bhattacharya,et al.  Random Dynamical Systems: Theory and Applications , 2007 .

[31]  L. Glass,et al.  The logical analysis of continuous, non-linear biochemical control networks. , 1973, Journal of theoretical biology.

[32]  Dima Grigoriev,et al.  Algorithms and complexity in biological pattern formation problems , 2006, Ann. Pure Appl. Log..

[33]  L. V. Valen,et al.  A new evolutionary law , 1973 .