Confinement effects on intermediate-state flux patterns in mesoscopic type-I superconductors.

Intermediate-state flux structures in mesoscopic type-I superconductors are studied within the Ginzburg-Landau theory. In addition to well-established tubular and laminar structures, the strong confinement leads to the formation of (i) a phase of singly quantized vortices, which is typical for type-II superconductors and (ii) a ring of a normal domain at equilibrium. The stability region and the formation process of these intermediate-state structures are strongly influenced by the geometry of the sample.

[1]  J. Tejada,et al.  Topological magnetic irreversibility in superconducting Pb samples of various shapes , 2008 .

[2]  R. Prozorov,et al.  Current-driven transformations of the intermediate-state patterns in type-I superconductors , 2008, 0806.4608.

[3]  R. Prozorov,et al.  Suprafroth in type-I superconductors , 2008 .

[4]  R. Prozorov Equilibrium topology of the intermediate state in type-I superconductors of different shapes. , 2006, Physical review letters.

[5]  P. Valko,et al.  Nucleation of superconductivity in thin type-I foils , 2006, cond-mat/0607734.

[6]  A. Cēbers,et al.  Nucleation and collapse of the superconducting phase in type-I superconducting films. , 2005, Physical review letters.

[7]  A. Cēbers,et al.  Normal-state bubbles and lamellae in type-I superconductors , 2005 .

[8]  D. Domínguez,et al.  Magnetic properties of the intermediate state in small type-I superconductors , 2004, cond-mat/0412631.

[9]  A. Kanda,et al.  Experimental evidence for giant vortex states in a mesoscopic superconducting disk. , 2004, Physical review letters.

[10]  R. Prozorov,et al.  Topological Hysteresis in the Intermediate State of Type-I Superconductors , 2004, cond-mat/0409553.

[11]  M. Metlitski,et al.  Neutron stars as type-I superconductors. , 2003, Physical review letters.

[12]  V. Fomin,et al.  Stable vortex-antivortex molecules in mesoscopic superconducting triangles. , 2002, Physical review letters.

[13]  Victor V. Moshchalkov,et al.  Symmetry-induced formation of antivortices in mesoscopic superconductors , 2000, Nature.

[14]  E. Brandt Irreversible magnetization of pin-free type-II superconductors , 1999, cond-mat/9904191.

[15]  F. Peeters,et al.  Vortex Phase Diagram for Mesoscopic Superconducting Disks , 1998, cond-mat/9806013.

[16]  R. Goldstein,et al.  Shapes of flux domains in the intermediate state of type-I superconductors , 1997, cond-mat/9704161.

[17]  M. Seul,et al.  Domain Shapes and Patterns: The Phenomenology of Modulated Phases , 1995, Science.

[18]  Jackson,et al.  Current-loop model for the intermediate state of type-I superconductors. , 1994, Physical review letters.

[19]  A. Fortini,et al.  Thermodynamics of metastable processes in the magnetization of type-I superconductors , 1976 .

[20]  H. Kirchner,et al.  Nonbranching intermediate-state structures in bulk lead , 1974 .

[21]  G. Cody,et al.  Magnetic transitions of superconducting thin films and foils. II. Tin , 1968 .

[22]  T. Faber,et al.  The intermediate state in superconducting plates , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  B. Dutoit,et al.  Experimental study of the geometrical barrier in type-I superconducting strips , 1999 .

[24]  M. Tinkham,et al.  Patterns of magnetic flux penetration in superconducting films , 1971 .