Optimality conditions for the nonlinear programming problems on Riemannian manifolds
暂无分享,去创建一个
[1] D. Motreanu,et al. Quasi-tangent vectors in flow-invariance and optimization problems on Banach manifolds , 1982 .
[2] D. Gabay. Minimizing a differentiable function over a differential manifold , 1982 .
[3] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[4] R. Mahony. The constrained newton method on a Lie group and the symmetric eigenvalue problem , 1996 .
[5] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[6] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[7] John M. Lee. Introduction to Smooth Manifolds , 2002 .
[8] R. Adler,et al. Newton's method on Riemannian manifolds and a geometric model for the human spine , 2002 .
[9] Robert E. Mahony,et al. A Grassmann-Rayleigh Quotient Iteration for Computing Invariant Subspaces , 2002, SIAM Rev..
[10] J. Ferrera,et al. Nonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifolds , 2003, math/0305427.
[11] F. Clarke,et al. Dini Derivative and a Characterization for Lipschitz and Convex Functions on Riemannian Manifolds , 2006 .
[12] O. P. Ferreira. Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds , 2006 .
[13] Yaguang Yang. Globally Convergent Optimization Algorithms on Riemannian Manifolds: Uniform Framework for Unconstrained and Constrained Optimization , 2007 .
[14] Pierre-Antoine Absil,et al. Trust-Region Methods on Riemannian Manifolds , 2007, Found. Comput. Math..
[15] Yu. S. Ledyaev,et al. Nonsmooth analysis on smooth manifolds , 2007 .
[16] Levent Tunçel,et al. Optimization algorithms on matrix manifolds , 2009, Math. Comput..
[17] Lei-Hong Zhang,et al. Riemannian Newton Method for the Multivariate Eigenvalue Problem , 2010, SIAM J. Matrix Anal. Appl..
[18] M. R. Pouryayevali,et al. Generalized gradients and characterization of epi-Lipschitz sets in Riemannian manifolds , 2011 .
[19] Yong Zhang,et al. An augmented Lagrangian approach for sparse principal component analysis , 2009, Mathematical Programming.
[20] Wotao Yin,et al. A feasible method for optimization with orthogonality constraints , 2013, Math. Program..