Multitemporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring

Abstract Monitoring Earth dynamics using current and future satellites is one of the most important objectives of the remote sensing community. The exploitation of image time series from sensors with different characteristics provides new opportunities to increase the knowledge about environmental changes and to support many operational applications. This paper presents an image fusion approach based on multiresolution and multisensor regularized spatial unmixing. The approach yields a composite image with the spatial resolution of the high spatial resolution image while retaining the spectral and temporal characteristics of the medium spatial resolution image. The approach is tested using images from Landsat/TM and ENVISAT/MERIS instruments, but is general enough to be applied to other sensor pairs. The potential of the proposed spatial unmixing approach is illustrated in an agricultural monitoring application where Landsat temporal profiles from images acquired over Albacete, Spain, in 2004 and 2009 are complemented with MERIS fused images. The resulting spatial resolution from Landsat allows monitoring small and medium size crops at the required scale while the fine spectral and temporal resolution from MERIS allow a more accurate determination of the crop type and phenology as well as capturing rapidly varying land-cover changes.

[1]  Xiuping Jia,et al.  Collinearity and orthogonality of endmembers in linear spectral unmixing , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[2]  Yun Zhang,et al.  Understanding image fusion , 2004 .

[3]  Dieter Oertel,et al.  Unmixing-based multisensor multiresolution image fusion , 1999, IEEE Trans. Geosci. Remote. Sens..

[4]  Lucien Wald,et al.  Quality of high resolution synthesised images: Is there a simple criterion ? , 2000 .

[5]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[6]  Christine Pohl,et al.  Multisensor image fusion in remote sensing: concepts, methods and applications , 1998 .

[7]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[8]  Antonio J. Plaza,et al.  On Endmember Identification in Hyperspectral Images Without Pure Pixels: A Comparison of Algorithms , 2011, Journal of Mathematical Imaging and Vision.

[9]  Jocelyn Chanussot,et al.  Synthesis of Multispectral Images to High Spatial Resolution: A Critical Review of Fusion Methods Based on Remote Sensing Physics , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Mathew R. Schwaller,et al.  On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Giles M. Foody,et al.  Land cover classification using multi‐temporal MERIS vegetation indices , 2007 .

[12]  Tania Stathaki,et al.  Image Fusion: Algorithms and Applications , 2008 .

[13]  C. A. Mücher,et al.  Using MERIS on Envisat for land cover mapping in the Netherlands , 2007 .

[14]  Luciano Alparone,et al.  Quality assessment of pansharpening methods and products , 2011 .

[15]  M. Rast,et al.  The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission , 1999 .

[16]  Luis Alonso,et al.  Regularized Multiresolution Spatial Unmixing for ENVISAT/MERIS and Landsat/TM Image Fusion , 2011, IEEE Geoscience and Remote Sensing Letters.

[17]  A. H. J. M. Pellemans,et al.  MERGING MULTISPECTRAL AND PANCHROMATIC SPOT IMAGES WITH RESPECT TO THE RADIOMETRIC PROPERTIES OF THE SENSOR , 1993 .

[18]  Stavri G. Nikolov,et al.  Image fusion: Advances in the state of the art , 2007, Inf. Fusion.

[19]  John F. Mustard,et al.  Spectral unmixing , 2002, IEEE Signal Process. Mag..

[20]  Yang Shao,et al.  Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[21]  H. Carrão,et al.  Multitemporal MERIS images for land-cover mapping at a national scale: a case study of Portugal , 2010 .

[22]  Ethem Alpaydin,et al.  Soft vector quantization and the EM algorithm , 1998, Neural Networks.

[23]  Audrey Minghelli-Roman,et al.  Spatial resolution improvement of MeRIS images by fusion with TM images , 2001, IEEE Trans. Geosci. Remote. Sens..

[24]  Luciano Alparone,et al.  A global quality measurement of pan-sharpened multispectral imagery , 2004, IEEE Geoscience and Remote Sensing Letters.

[25]  Audrey Minghelli-Roman,et al.  Spatial resolution improvement by merging MERIS-ETM images for coastal water monitoring , 2006, IEEE Geoscience and Remote Sensing Letters.

[26]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[27]  Jocelyn Chanussot,et al.  Pansharpening Quality Assessment Using the Modulation Transfer Functions of Instruments , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[28]  A. Bovik,et al.  A universal image quality index , 2002, IEEE Signal Processing Letters.

[29]  Qingquan Li,et al.  A comparative analysis of image fusion methods , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Luis Gómez-Chova,et al.  Remote Sensing Image Processing , 2011, Remote Sensing Image Processing.

[31]  Luis Alonso,et al.  Gridding Artifacts on Medium-Resolution Satellite Image Time Series: MERIS Case Study , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[32]  M. Schaepman,et al.  Downscaling time series of MERIS full resolution data to monitor vegetation seasonal dynamics , 2009 .

[33]  Jong-Hwa Park,et al.  MODIS and Landsat TM data image fusion based on improved resolution method: assessing the quality of resulting NDVI images , 2007, SPIE Remote Sensing.

[34]  Antonio J. Plaza,et al.  A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Jocelyn Chanussot,et al.  Comparison of Pansharpening Algorithms: Outcome of the 2006 GRS-S Data-Fusion Contest , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Carsten Brockmann,et al.  Globcover - A Global Land Cover Service with MERIS , 2007 .

[37]  Michael E. Schaepman,et al.  Unmixing-Based Landsat TM and MERIS FR Data Fusion , 2008, IEEE Geoscience and Remote Sensing Letters.

[38]  M. E. Schaepman,et al.  Using MERIS fused images for land-cover mapping and vegetation status assessment in heterogeneous landscapes , 2011 .

[39]  L. Gómez-Chova,et al.  Coupled retrieval of aerosol optical thickness, columnar water vapor and surface reflectance maps from ENVISAT/MERIS data over land , 2008 .