Galaxy bias from the Dark Energy Survey Science Verification data:combining galaxy density maps and weak lensing maps

We measure the redshift evolution of galaxy bias for a magnitude-limited galaxy sample by combining the galaxy density maps and weak lensing shear maps for a ˜116 deg2 area of the Dark Energy Survey (DES) Science Verification (SV) data. This method was first developed in Amara et al. and later re-examined in a companion paper with rigorous simulation tests and analytical treatment of tomographic measurements. In this work we apply this method to the DES SV data and measure the galaxy bias for a i < 22.5 galaxy sample. We find the galaxy bias and 1sigma error bars in four photometric redshift bins to be 1.12 ± 0.19 (z = 0.2-0.4), 0.97 ± 0.15 (z = 0.4-0.6), 1.38 ± 0.39 (z = 0.6-0.8), and 1.45 ± 0.56 (z = 0.8-1.0). These measurements are consistent at the 2sigma level with measurements on the same data set using galaxy clustering and cross-correlation of galaxies with cosmic microwave background lensing, with most of the redshift bins consistent within the 1sigma error bars. In addition, our method provides the only sigma8 independent constraint among the three. We forward model the main observational effects using mock galaxy catalogues by including shape noise, photo-z errors, and masking effects. We show that our bias measurement from the data is consistent with that expected from simulations. With the forthcoming full DES data set, we expect this method to provide additional constraints on the galaxy bias measurement from more traditional methods. Furthermore, in the process of our measurement, we build up a 3D mass map that allows further exploration of the dark matter distribution and its relation to galaxy evolution.

[1]  E. Gaztañaga,et al.  Combining spectroscopic and photometric surveys using angular cross-correlations – III. Galaxy bias and stochasticity , 2015, Monthly Notices of the Royal Astronomical Society.

[2]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[3]  F. Castander,et al.  A new method to measure galaxy bias by combining the density and weak lensing fields , 2016, 1601.00160.

[4]  C. B. D'Andrea,et al.  Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing , 2015, Physical Review D.

[5]  J. E. Carlstrom,et al.  CMB lensing tomography with the DES Science Verification galaxies , 2015, Monthly Notices of the Royal Astronomical Society.

[6]  R. J. Brunner,et al.  Galaxy clustering, photometric redshifts and diagnosis of systematics in the DES Science Verification data , 2015, 1507.05360.

[7]  C. B. D'Andrea,et al.  Cosmology from cosmic shear with Dark Energy Survey science verification data , 2015, 1507.05552.

[8]  C. B. D'Andrea,et al.  The DES Science Verification weak lensing shear catalogues , 2015, Monthly Notices of the Royal Astronomical Society.

[9]  R. Keisler,et al.  Assessing Galaxy Limiting Magnitudes in Large Optical Surveys , 2015, 1509.00870.

[10]  Christopher J. Miller,et al.  Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data , 2015 .

[11]  R. Nichol,et al.  Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data. , 2015, Physical review letters.

[12]  R. Nichol,et al.  MAPPING AND SIMULATING SYSTEMATICS DUE TO SPATIALLY VARYING OBSERVING CONDITIONS IN DES SCIENCE VERIFICATION DATA , 2015, 1507.05647.

[13]  R. Nichol,et al.  Cosmic shear measurements with Dark Energy Survey science verification data , 2015, 1507.05598.

[14]  F. Castander,et al.  An algorithm to build mock galaxy catalogues using MICE simulations , 2014, 1411.3286.

[15]  O. Lahav,et al.  A Prescription for Galaxy Biasing Evolution as a Nuisance Parameter , 2014, 1405.5521.

[16]  F. Castander,et al.  The MICE Grand Challenge light-cone simulation – III. Galaxy lensing mocks from all-sky lensing maps , 2013, 1312.2947.

[17]  F. Castander,et al.  The MICE Grand Challenge lightcone simulation – II. Halo and galaxy catalogues , 2013, 1312.2013.

[18]  F. J. Castander,et al.  The MICE Grand Challenge Lightcone Simulation I: Dark matter clustering , 2013, 1312.1707.

[19]  R. Nichol,et al.  Photometric redshift analysis in the Dark Energy Survey Science Verification data , 2014, 1406.4407.

[20]  E. Sheldon An implementation of Bayesian lensing shear measurement , 2014, 1403.7669.

[21]  R. J. Brunner,et al.  Exhausting the Information: Novel Bayesian Combination of Photometric Redshift PDFs , 2014, 1403.0044.

[22]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[23]  Farhan Feroz,et al.  SKYNET: an efficient and robust neural network training tool for machine learning in astronomy , 2013, ArXiv.

[24]  R. J. Brunner,et al.  TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.

[25]  S. Bridle,et al.  im3shape: a maximum likelihood galaxy shear measurement code for cosmic gravitational lensing , 2013, 1302.0183.

[26]  A. Slosar,et al.  Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7 , 2012, 1207.1120.

[27]  Emmanuel Bertin,et al.  The Dark Energy Survey data processing and calibration system , 2012, Other Conferences.

[28]  B. Garilli,et al.  The COSMOS Density Field: A Reconstruction Using Both Weak Lensing and Galaxy Distributions , 2012, 1205.1064.

[29]  J. Mohr,et al.  THE BLANCO COSMOLOGY SURVEY: DATA ACQUISITION, PROCESSING, CALIBRATION, QUALITY DIAGNOSTICS, AND DATA RELEASE , 2012, 1204.1210.

[30]  J. Rhodes,et al.  COSMOS: STOCHASTIC BIAS FROM MEASUREMENTS OF WEAK LENSING AND GALAXY CLUSTERING , 2012, 1202.6491.

[31]  Y. Mellier,et al.  Galaxy clustering in the CFHTLS-Wide: the changing relationship between galaxies and haloes since z ~ 1.2 , 2011, 1107.0616.

[32]  R. Nichol,et al.  GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY , 2010, 1005.2413.

[33]  J. G. Jernigan,et al.  Astronomical Data Analysis Software and Systems XX , 2011 .

[34]  M. Manera,et al.  The local bias model in the large-scale halo distribution , 2009, 0912.0446.

[35]  P. Schneider,et al.  Relative clustering and the joint halo occupation distribution of red sequence and blue-cloud galaxies in COMBO-17 , 2008, 0805.3459.

[36]  W. Percival,et al.  Scale‐dependent galaxy bias in the Sloan Digital Sky Survey as a function of luminosity and colour , 2008, 0808.1101.

[37]  Eric Neilsen,et al.  The Dark Energy Survey data management system , 2008, Astronomical Telescopes + Instrumentation.

[38]  O. Lahav,et al.  Halo-model signatures from 380 000 Sloan Digital Sky Survey luminous red galaxies with photometric redshifts , 2007, 0704.3377.

[39]  M. Blanton,et al.  SDSS galaxy clustering: luminosity and colour dependence and stochasticity , 2007, astro-ph/0702584.

[40]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[41]  P. Schneider,et al.  GaBoDS: The Garching-Bonn Deep Survey - VI. Probing galaxy bias using weak gravitational lensing , 2006, astro-ph/0606622.

[42]  R. C. Smith,et al.  Cyber-infrastructure to support science and data management for the Dark Energy Survey , 2006, SPIE Astronomical Telescopes + Instrumentation.

[43]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[44]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: stochastic relative biasing between galaxy populations , 2004, astro-ph/0404275.

[45]  Daniel Durand,et al.  Astronomical Data Analysis Software and Systems XI , 2009 .

[46]  M. Blanton How Stochastic Is the Relative Bias between Galaxy Types? , 2000, astro-ph/0003228.

[47]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[48]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[49]  P. Schneider Cosmic Shear and Biasing , 1997, astro-ph/9708269.

[50]  L. Moscardini,et al.  Redshift evolution of clustering , 1996, astro-ph/9608004.

[51]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[52]  N. Kaiser,et al.  Mapping the dark matter with weak gravitational lensing , 1993 .

[53]  N. Kaiser On the spatial correlations of Abell clusters , 1984 .

[54]  K. Kojima Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. , 1969 .