Galaxy bias from the Dark Energy Survey Science Verification data:combining galaxy density maps and weak lensing maps
暂无分享,去创建一个
R. Nichol | J. Frieman | O. Lahav | F. Castander | P. Fosalba | F. Abdalla | J. Mohr | D. Bacon | D. Capozzi | A. Rosell | L. Costa | K. Honscheid | R. Ogando | A. Ross | E. Rykoff | F. Sobreira | M. Swanson | C. Bonnett | A. Amara | Peter Melchior | C. Chang | M. Kind | R. Gruendl | W. Hartley | J. Annis | S. Allam | H. Diehl | I. Sevilla-Noarbe | T. Abbott | E. Bertin | D. Brooks | E. Buckley-Geer | D. Burke | J. Carretero | M. Crocce | C. Cunha | C. D'Andrea | S. Desai | P. Doel | T. Eifler | A. Evrard | B. Flaugher | E. Gaztañaga | D. Gruen | G. Gutiérrez | D. James | K. Kuehn | N. Kuropatkin | M. Lima | J. Marshall | R. Miquel | A. Plazas | A. Romer | A. Roodman | V. Scarpine | M. Schubnell | R. Smith | E. Suchyta | G. Tarlé | A. Walker | J. Zuntz | E. Sheldon | M. Soares-Santos | E. Sánchez | A. Benoit-Lévy | J. Dietrich | J. Estrada | T. Giannantonio | B. Jain | P. Martini | C. Miller | B. Nord | A. Réfrégier | D. Thomas | V. Vikram | M. Troxel | K. Reil | M. Jarvis | T. Kacprzak | T. Li | M. Becker | D. Goldstein | A. Pujol | M. C. Kind | A. C. Rosell | A. Roodman | J. Marshall | C. Miller | C. Chang | T. Li | R. Smith | T. Li
[1] E. Gaztañaga,et al. Combining spectroscopic and photometric surveys using angular cross-correlations – III. Galaxy bias and stochasticity , 2015, Monthly Notices of the Royal Astronomical Society.
[2] M. Bartelmann,et al. Weak gravitational lensing , 2016, Scholarpedia.
[3] F. Castander,et al. A new method to measure galaxy bias by combining the density and weak lensing fields , 2016, 1601.00160.
[4] C. B. D'Andrea,et al. Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing , 2015, Physical Review D.
[5] J. E. Carlstrom,et al. CMB lensing tomography with the DES Science Verification galaxies , 2015, Monthly Notices of the Royal Astronomical Society.
[6] R. J. Brunner,et al. Galaxy clustering, photometric redshifts and diagnosis of systematics in the DES Science Verification data , 2015, 1507.05360.
[7] C. B. D'Andrea,et al. Cosmology from cosmic shear with Dark Energy Survey science verification data , 2015, 1507.05552.
[8] C. B. D'Andrea,et al. The DES Science Verification weak lensing shear catalogues , 2015, Monthly Notices of the Royal Astronomical Society.
[9] R. Keisler,et al. Assessing Galaxy Limiting Magnitudes in Large Optical Surveys , 2015, 1509.00870.
[10] Christopher J. Miller,et al. Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data , 2015 .
[11] R. Nichol,et al. Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data. , 2015, Physical review letters.
[12] R. Nichol,et al. MAPPING AND SIMULATING SYSTEMATICS DUE TO SPATIALLY VARYING OBSERVING CONDITIONS IN DES SCIENCE VERIFICATION DATA , 2015, 1507.05647.
[13] R. Nichol,et al. Cosmic shear measurements with Dark Energy Survey science verification data , 2015, 1507.05598.
[14] F. Castander,et al. An algorithm to build mock galaxy catalogues using MICE simulations , 2014, 1411.3286.
[15] O. Lahav,et al. A Prescription for Galaxy Biasing Evolution as a Nuisance Parameter , 2014, 1405.5521.
[16] F. Castander,et al. The MICE Grand Challenge light-cone simulation – III. Galaxy lensing mocks from all-sky lensing maps , 2013, 1312.2947.
[17] F. Castander,et al. The MICE Grand Challenge lightcone simulation – II. Halo and galaxy catalogues , 2013, 1312.2013.
[18] F. J. Castander,et al. The MICE Grand Challenge Lightcone Simulation I: Dark matter clustering , 2013, 1312.1707.
[19] R. Nichol,et al. Photometric redshift analysis in the Dark Energy Survey Science Verification data , 2014, 1406.4407.
[20] E. Sheldon. An implementation of Bayesian lensing shear measurement , 2014, 1403.7669.
[21] R. J. Brunner,et al. Exhausting the Information: Novel Bayesian Combination of Photometric Redshift PDFs , 2014, 1403.0044.
[22] C. A. Oxborrow,et al. Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.
[23] Farhan Feroz,et al. SKYNET: an efficient and robust neural network training tool for machine learning in astronomy , 2013, ArXiv.
[24] R. J. Brunner,et al. TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.
[25] S. Bridle,et al. im3shape: a maximum likelihood galaxy shear measurement code for cosmic gravitational lensing , 2013, 1302.0183.
[26] A. Slosar,et al. Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7 , 2012, 1207.1120.
[27] Emmanuel Bertin,et al. The Dark Energy Survey data processing and calibration system , 2012, Other Conferences.
[28] B. Garilli,et al. The COSMOS Density Field: A Reconstruction Using Both Weak Lensing and Galaxy Distributions , 2012, 1205.1064.
[29] J. Mohr,et al. THE BLANCO COSMOLOGY SURVEY: DATA ACQUISITION, PROCESSING, CALIBRATION, QUALITY DIAGNOSTICS, AND DATA RELEASE , 2012, 1204.1210.
[30] J. Rhodes,et al. COSMOS: STOCHASTIC BIAS FROM MEASUREMENTS OF WEAK LENSING AND GALAXY CLUSTERING , 2012, 1202.6491.
[31] Y. Mellier,et al. Galaxy clustering in the CFHTLS-Wide: the changing relationship between galaxies and haloes since z ~ 1.2 , 2011, 1107.0616.
[32] R. Nichol,et al. GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY , 2010, 1005.2413.
[33] J. G. Jernigan,et al. Astronomical Data Analysis Software and Systems XX , 2011 .
[34] M. Manera,et al. The local bias model in the large-scale halo distribution , 2009, 0912.0446.
[35] P. Schneider,et al. Relative clustering and the joint halo occupation distribution of red sequence and blue-cloud galaxies in COMBO-17 , 2008, 0805.3459.
[36] W. Percival,et al. Scale‐dependent galaxy bias in the Sloan Digital Sky Survey as a function of luminosity and colour , 2008, 0808.1101.
[37] Eric Neilsen,et al. The Dark Energy Survey data management system , 2008, Astronomical Telescopes + Instrumentation.
[38] O. Lahav,et al. Halo-model signatures from 380 000 Sloan Digital Sky Survey luminous red galaxies with photometric redshifts , 2007, 0704.3377.
[39] M. Blanton,et al. SDSS galaxy clustering: luminosity and colour dependence and stochasticity , 2007, astro-ph/0702584.
[40] P. Schneider,et al. Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.
[41] P. Schneider,et al. GaBoDS: The Garching-Bonn Deep Survey - VI. Probing galaxy bias using weak gravitational lensing , 2006, astro-ph/0606622.
[42] R. C. Smith,et al. Cyber-infrastructure to support science and data management for the Dark Energy Survey , 2006, SPIE Astronomical Telescopes + Instrumentation.
[43] Carlos E. C. J. Gabriel,et al. Astronomical Data Analysis Software and Systems Xv , 2022 .
[44] D. Madgwick,et al. The 2dF Galaxy Redshift Survey: stochastic relative biasing between galaxy populations , 2004, astro-ph/0404275.
[45] Daniel Durand,et al. Astronomical Data Analysis Software and Systems XI , 2009 .
[46] M. Blanton. How Stochastic Is the Relative Bias between Galaxy Types? , 2000, astro-ph/0003228.
[47] A. Lewis,et al. Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.
[48] N. Benı́tez. Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.
[49] P. Schneider. Cosmic Shear and Biasing , 1997, astro-ph/9708269.
[50] L. Moscardini,et al. Redshift evolution of clustering , 1996, astro-ph/9608004.
[51] E. Bertin,et al. SExtractor: Software for source extraction , 1996 .
[52] N. Kaiser,et al. Mapping the dark matter with weak gravitational lensing , 1993 .
[53] N. Kaiser. On the spatial correlations of Abell clusters , 1984 .
[54] K. Kojima. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. , 1969 .