Futures for hydrogen produced using nuclear energy
暂无分享,去创建一个
What is the future of hydrogen (H2) produced from nuclear energy? Assuming that economically competitive nuclear H2 can be produced, production of H2 may become the primary use of nuclear energy and the basis for both a nuclear-H2 renewable (solar, wind, etc.) energy economy and a nuclear-H2 transport system. The technical and economic bases for these conclusions are described. In a nuclear-H2 renewable energy economy, nuclear energy is used to produce H2 that is stored and becomes the energy-storage component of the electrical generating system. The stored H2 replaces piles of coal and tanks of liquid fuel. Capital-intensive renewable energy sources and nuclear reactors produce electricity at their full capacity. The stored H2 is used in fuel cells to produce the highly variable quantities of electricity needed to fill the gap between the electricity demand by the customer and the electricity generated by the rest of the electrical generating system. Hydrogen is also used to produce the liquid or gaseous transport fuels. This energy-system architecture is a consequence of the fundamental differences between the characteristics of electricity (movement of electrons) and those of H2 (movement of atoms). Electricity can be generated, transformed, and used economically on either a small or a large scale. However, it is difficult to generate, store, and transform H2 economically on a small scale. This distinction favors the use of large-scale nuclear systems for H2 production.
[1] L. J. Ott,et al. The Advanced High-Temperature Reactor (AHTR) for Producing Hydrogen to Manufacture Liquid Fuels , 2004 .
[2] Jim Giles. Oil exploration: Every last drop , 2004, Nature.
[3] C. Forsberg. Nuclear Hydrogen for Peak Electricity Production and Spinning Reserve , 2005 .
[4] X. Verykios,et al. Renewable Hydrogen from Ethanol by Autothermal Reforming , 2004, Science.