Seasonal Variation in the Content of Hydrolyzable Tannins, Flavonoid Glycosides, and Proanthocyanidins in Oak Leaves

[1]  A. Kurtto,et al.  Atlas Florae Europaeae : Distribution of Vascular Plants in Europe , 2018 .

[2]  Rebecca E. Forkner,et al.  Feeny revisited: condensed tannins as anti‐herbivore defences in leaf‐chewing herbivore communities of Quercus , 2004 .

[3]  V. Ossipov,et al.  Effects of host shading on consumption and growth of the geometrid Epirrita autumnata: interactive roles of water, primary and secondary compounds , 2003 .

[4]  J. Salminen Effects of Sample Drying and Storage, and Choice of Extraction Solvent and Analysis Method on the Yield of Birch Leaf Hydrolyzable Tannins , 2003, Journal of Chemical Ecology.

[5]  Olli-Pekka Tikkanen,et al.  Phenological variation as protection against defoliating insects: the case of Quercus robur and Operophtera brumata , 2003, Oecologia.

[6]  E. Haukioja Putting the insect into the birch–insect interaction , 2003, Oecologia.

[7]  R. Dahlgren,et al.  Linking Chemical Reactivity and Protein Precipitation to Structural Characteristics of Foliar Tannins , 2003, Journal of Chemical Ecology.

[8]  J. Salminen,et al.  Effects of hydrolysable tannins on a herbivorous insect: fate of individual tannins in insect digestive tract , 2002, CHEMOECOLOGY.

[9]  C. Mcarthur,et al.  Rethinking the role of many plant phenolics - protection from photodamage not herbivores? , 2002 .

[10]  V. Ossipov,et al.  Interactive effects of leaf maturation and phenolics on consumption and growth of a geometrid moth , 2002 .

[11]  Hideyuki Ito,et al.  Dimeric and trimeric hydrolyzable tannins from Quercus coccifera and Quercus suber. , 2002, Journal of natural products.

[12]  J. Koricheva,et al.  Seasonal changes in birch leaf chemistry: are there trade-offs between leaf growth and accumulation of phenolics? , 2002, Oecologia.

[13]  M. Inbar,et al.  Suitability of stressed and vigorous plants to various insect herbivores , 2001 .

[14]  E. Cadahía,et al.  Evolution of ellagitannins in Spanish, French, and American oak woods during natural seasoning and toasting. , 2001, Journal of agricultural and food chemistry.

[15]  G. G. Gross,et al.  Biosynthesis and subcellular distribution of hydrolyzable tannins. , 2001, Phytochemistry.

[16]  V. Ossipov,et al.  Seasonal variation in the content of hydrolysable tannins in leaves of Betula pubescens. , 2001, Phytochemistry.

[17]  J. Schultz,et al.  LIMITATIONS OF FOLIN ASSAYS OF FOLIAR PHENOLICS IN ECOLOGICAL STUDIES , 2001, Journal of Chemical Ecology.

[18]  V. Ossipov,et al.  Proanthocyanidins of mountain birch leaves: quantification and properties. , 2001, Phytochemical analysis : PCA.

[19]  H. Savolainen,et al.  Analysis of oak tannins by liquid chromatography-electrospray ionisation mass spectrometry. , 2000, Journal of chromatography. A.

[20]  V. Ossipov,et al.  Characterisation of hydrolysable tannins from leaves of Betula pubescens by high-performance liquid chromatography-mass spectrometry. , 1999, Journal of chromatography. A.

[21]  É. Bauce,et al.  Influence of tree growth rate, shoot size and foliar chemistry on the abundance and performance of a galling adelgid , 1999 .

[22]  K. S. Feldman,et al.  Binding affinities of gallotannin analogs with bovine serum albumin: ramifications for polyphenol-protein molecular recognition. , 1999, Phytochemistry.

[23]  V. Ossipov,et al.  Multiplicity of biochemical factors determining quality of growing birch leaves , 1999, Oecologia.

[24]  R. Helm,et al.  C-Glycosidic ellagitannins from white oak heartwood and callus tissues , 1999 .

[25]  G. G. Gross,et al.  Color reaction of hydrolyzable tannins with Bradford reagent, Coomassie brilliant blue , 1999 .

[26]  E. Cadahía,et al.  Evolution of phenolic compounds of spanish oak wood during natural seasoning. First results. , 1999, Journal of agricultural and food chemistry.

[27]  E. Cadahía,et al.  Polyphenolic composition of Quercus suber cork from different Spanish provenances , 1998 .

[28]  R. Baumes,et al.  Variability of wood extractives among Quercus robur and Quercus petraea trees from mixed stands and their relation to wood anatomy and leaf morphology , 1998 .

[29]  Thomas P. Clausen,et al.  DIVERSITY OF STRUCTURE AND ANTIHERBIVORE ACTIVITY IN CONDENSED TANNINS , 1997 .

[30]  V. Ossipov,et al.  Variation of total phenolic content and individual low-molecular-weight phenolics in foliage of mountain birch trees (Betula pubescens ssp.tortuosa) , 1996, Journal of Chemical Ecology.

[31]  V. Ossipov,et al.  High-performance liquid chromatographic separation and identification of phenolic compounds from leaves of Betula pubescens and Betula pendula , 1996 .

[32]  Y. Glories,et al.  Structure simulation of two ellagitannins from Quercus robur L. , 1995 .

[33]  V. Ossipov,et al.  HPLC isolation and identification of flavonoids from white birch Betula pubescens leaves , 1995 .

[34]  M. Moutounet,et al.  Localization of the ellagitannins in the tissues of Quercus robur and Quercus petraea woods , 1994 .

[35]  A. Scalbert,et al.  Methylation, acetylation and gel permeation of hydrolysable tannins , 1994 .

[36]  H. Appel Phenolics in ecological interactions: The importance of oxidation , 1993, Journal of Chemical Ecology.

[37]  D. Herms,et al.  The Dilemma of Plants: To Grow or Defend , 1992, The Quarterly Review of Biology.

[38]  A. Scalbert,et al.  Structural Elucidation of New Dimeric Ellagitannins from Quercus robur L. Roburins A‐E , 1991 .

[39]  Thomas P. Clausen,et al.  Ecological implications of condensed tannin structure: A case study , 1990, Journal of Chemical Ecology.

[40]  T. C. Wilson,et al.  Quantitative determination of ellagic acid , 1990 .

[41]  W. Oechel,et al.  Seasonal variation in leaf chemistry of the coast live oak Quercus agrifolia and implications for the California oak moth Phryganidia californica , 1989, Oecologia.

[42]  A. Hagerman,et al.  Determination of gallotannin with rhodanine. , 1988, Analytical biochemistry.

[43]  J. Schultz,et al.  Relationships among defoliation, red oak phenolics, and gypsy moth growth and reproduction , 1988 .

[44]  S. Faeth Indirect Interactions Between Temporally Separated Herbivores Mediated by the Host Plant , 1986 .

[45]  W. Zucker Tannins: Does Structure Determine Function? An Ecological Perspective , 1983, The American Naturalist.

[46]  J. Schultz,et al.  Oak Leaf Quality Declines in Response to Defoliation by Gypsy Moth Larvae , 1982, Science.

[47]  P. Niemelä Seasonal patterns in species richness of herbivores: Macrolepidopteran larvae on Finnish deciduous trees , 1982 .

[48]  Áskell Löve,et al.  Atlas florae Europaeae , 1977 .

[49]  P. Feeny SEASONAL CHANGES IN OAK LEAF TANNINS AND NUTRIENTS AS A CAUSE OF SPRING FEEDING BY WINTER MOTH CATERPILLARS , 1970 .

[50]  M. Hunter,et al.  Cynipid Gall-Wasp Communities Correlate with Oak Chemistry , 2004, Journal of Chemical Ecology.

[51]  G. G. Gross,et al.  Ellagitannin biosynthesis: oxidation of pentagalloylglucose to tellimagrandin II by an enzyme from Tellima grandiflora leaves , 2001 .

[52]  S. Hartley,et al.  Direct and indirect competitive effects of foliage feeding guilds on the performance of the birch leaf‐miner Eriocrania , 2000 .

[53]  R. Helm,et al.  Toward Understanding Monomeric Ellagitannin Biosynthesis , 1999 .

[54]  G. G. Gross 3.20 – Biosynthesis of Hydrolyzable Tannins , 1999 .

[55]  D. J. Shure,et al.  The influence of light and nutrients on foliar phenolics and insect herbivory , 1994 .

[56]  E. Haslam Gallic Acid and Its Metabolites , 1992 .

[57]  T. Okuda,et al.  Oligomeric Hydrolyzable Tannins From Liquidambar Formosana and Spectral Analysis of the Orientation of Valoneoyl Groups in Their Molecules , 1992 .

[58]  T. Okuda,et al.  Oligomeric hydrolyzable tannins - Their 1H nmr spectra and partial degradation , 1992 .

[59]  A. Scalbert,et al.  Roburin A, a dimeric ellagitannin from heartwood of Quercus robur , 1991 .

[60]  A. Scalbert,et al.  Structural elucidation of new dimeric ellagitannins from Quercus robur L. roburins A–E , 1991 .

[61]  A. Scalbert,et al.  Polyphenols of Quercus robur: Adult tree and in vitro grown calli and shoots , 1988 .

[62]  Michael J. Crawley,et al.  Individual variation in the phenology of oak trees and its consequences for herbivorous insects , 1988 .

[63]  E. Haslam,et al.  Polyphenol interactions: astringency and the loss of astringency in ripening fruit☆ , 1987 .

[64]  A. Scalbert,et al.  Polyphenols and chemical defence of the leaves of Quercus robur , 1987 .

[65]  T. Okuda,et al.  Seasonal changes in the tannins of Liquidambar formosana reflecting their biogenesis , 1986 .

[66]  P. Niemela Seasonal patterns in the incidence of specialism: macrolepidopteran larvae on Finnish deciduous trees , 1983 .

[67]  T. Okuda,et al.  Ellagitannins of the casuarinaceae, stachyuraceae and myrtaceae , 1980 .

[68]  G. Hoffmann,et al.  Charakterisierung des Wachstumsverhaltens von Pflanzen durch Wachstumsschemata , 1973 .