On the linear advection equation subject to random velocity fields

This paper deals with the random linear advection equation for which the time-dependent velocity and the initial condition are independent random functions. Expressions for the density and joint density functions of the solution are given. We also verify that in the Gaussian time-dependent velocity case the probability density function of the solution satisfies a convection-diffusion equation with a time-dependent diffusion coefficient. Some exact examples are presented.

[1]  Fábio Antonio Dorini,et al.  The probability density function to the random linear transport equation , 2010, Appl. Math. Comput..

[2]  F. Pereira,et al.  Scaling Analysis for the Tracer Flow Problem in Self-Similar Permeability Fields , 2008, Multiscale Model. Simul..

[3]  George E. Karniadakis,et al.  Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation , 2002, J. Sci. Comput..

[4]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[5]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[6]  S. Pope Lagrangian PDF Methods for Turbulent Flows , 1994 .

[7]  Sheldon M. Ross Introduction to probability models , 1998 .

[8]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[9]  Peter Plaschko,et al.  Stochastic Differential Equations In Science And Engineering , 2006 .

[10]  M. El-Tawil,et al.  A proposed technique of SFEM on solving ordinary random differential equation , 2005, Appl. Math. Comput..

[11]  Juan Carlos Cortés,et al.  Analytic-numerical approximating processes of diffusion equation with data uncertainty , 2005 .

[12]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[13]  S. Pope Advances in PDF Methods for Turbulent Reactive Flows , 2004 .

[14]  Magdy A. El-Tawil,et al.  The approximate solutions of some stochastic differential equations using transformations , 2005, Appl. Math. Comput..

[15]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[16]  R. LeVeque Numerical methods for conservation laws , 1990 .

[17]  Fabio Antonio Dorini,et al.  On the evaluation of moments for solute transport by random velocity fields , 2009 .

[18]  You‐Kuan Zhang Stochastic Methods for Flow in Porous Media: Coping with Uncertainties , 2001 .

[19]  Kenzi Karasaki,et al.  Probability Density Functions for Solute Transport in Random Field , 2003 .

[20]  Haifeng Wang,et al.  Weak second-order splitting schemes for Lagrangian Monte Carlo particle methods for the composition PDF/FDF transport equations , 2010, J. Comput. Phys..

[21]  S. Pope,et al.  Filtered density function for large eddy simulation of turbulent reacting flows , 1998 .

[22]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[23]  Leonid I. Piterbarg,et al.  Advection and diffusion in random media , 1997 .

[24]  A. Hussein,et al.  Using FEM-RVT technique for solving a randomly excited ordinary differential equation with a random operator , 2007, Appl. Math. Comput..

[25]  Seifedine Kadry On the generalization of probabilistic transformation method , 2007, Appl. Math. Comput..

[26]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[27]  Nicolae Suciu,et al.  Spatially inhomogeneous transition probabilities as memory effects for diffusion in statistically homogeneous random velocity fields. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Juan Carlos Cortés,et al.  Random linear-quadratic mathematical models: Computing explicit solutions and applications , 2009, Math. Comput. Simul..

[29]  Juan Carlos Cortés,et al.  Random analytic solution of coupled differential models with uncertain initial condition and source term , 2008, Comput. Math. Appl..

[30]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[31]  Fábio Antonio Dorini,et al.  Statistical moments of the solution of the random Burgers-Riemann problem , 2009, Math. Comput. Simul..

[32]  Kenzi Karasaki,et al.  Exact Averaging of Stochastic Equations for Transport in Random Velocity Field , 2003 .

[33]  Dongbin Xiu,et al.  Galerkin method for wave equations with uncertain coefficients , 2008 .

[34]  G. Dagan Flow and transport in porous formations , 1989 .