Modelling dendritic solidification with melt convection using the extended finite element method

Dendritic solidification of pure materials from an undercooled melt is studied using the extended finite element method/ level set method for modelling the thermal problem and a volume-averaged stabilized finite element formulation for modelling fluid flow. The extended finite element method using evolving enrichment functions allows accurate modelling of the discontinuous thermal conditions at the moving sharp freezing front thus capturing its motion precisely. The solution of the velocity field in the melt is obtained assuming that the sharp-interface is diffused over the length of two finite elements. The methodology presented is shown to be an effective tool for capturing the interface phenomena and freezing interface growth using a single uniform finite element grid. The whole formulation is packaged into a flexible, modular and parallel library with the ability to incorporate new physics. Comparisons with other numerical methods as well as analytical results emphasize the fidelity of the method in modelling the underlying physical phenomena and growth mechanisms. Various examples of dendritic growth in two- and three-dimensions are presented.

[1]  J. Sethian Level set methods : evolving interfaces in geometry, fluid mechanics, computer vision, and materials science , 1996 .

[2]  T. Belytschko,et al.  The extended finite element method (XFEM) for solidification problems , 2002 .

[3]  J. Sethian,et al.  LEVEL SET METHODS FOR FLUID INTERFACES , 2003 .

[4]  Gustav Amberg,et al.  Phase-field simulation of dendritic growth in a shear flow , 1998 .

[5]  W. Shyy,et al.  Computation of Solid-Liquid Phase Fronts in the Sharp Interface Limit on Fixed Grids , 1999 .

[6]  N. Goldenfeld,et al.  Phase field model for three-dimensional dendritic growth with fluid flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  R. Sekerka,et al.  Stability of a Planar Interface During Solidification of a Dilute Binary Alloy , 1964 .

[8]  John E. Dolbow,et al.  Solving thermal and phase change problems with the eXtended finite element method , 2002 .

[9]  D. Juric,et al.  Direct numerical simulation of solidification microstructures affected by fluid flow , 1997 .

[10]  S. Osher,et al.  A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows , 1996 .

[11]  Wheeler,et al.  Phase-field model for isothermal phase transitions in binary alloys. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[12]  Department of Physics,et al.  EFFICIENT COMPUTATION OF DENDRITIC MICROSTRUCTURES USING ADAPTIVE MESH REFINEMENT , 1998 .

[13]  T. Belytschko,et al.  An enriched finite element method and level sets for axisymmetric two‐phase flow with surface tension , 2003 .

[14]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[15]  Robert Almgren,et al.  Second-Order Phase Field Asymptotics for Unequal Conductivities , 1999, SIAM J. Appl. Math..

[16]  David L. Chopp,et al.  A hybrid extended finite element/level set method for modeling phase transformations , 2002 .

[17]  Ted Belytschko,et al.  The extended finite element method for rigid particles in Stokes flow , 2001 .

[18]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[19]  Dantzig,et al.  Computation of dendritic microstructures using a level set method , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  T. Belytschko,et al.  An Extended Finite Element Method for Two-Phase Fluids , 2003 .

[21]  M. E. Glicksman,et al.  Convective heat transfer during dendritic growth , 1979 .

[22]  Ronald Fedkiw,et al.  A Level Set Approach for the Numerical Simulation of Dendritic Growth , 2003, J. Sci. Comput..

[23]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[24]  A. Karma,et al.  Regular Article: Modeling Melt Convection in Phase-Field Simulations of Solidification , 1999 .

[25]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .

[26]  Eberhard Bänsch,et al.  Simulation of dendritic crystal growth with thermal convection , 2000 .

[27]  K. A. Rathjen,et al.  Two-dimensional solidification in a corner , 1970 .

[28]  N. Zabaras,et al.  A level set simulation of dendritic solidification with combined features of front-tracking and fixed-domain methods , 2006 .

[29]  Alain Karma,et al.  Multiscale finite-difference-diffusion-Monte-Carlo method for simulating dendritic solidification , 2000 .

[30]  G Caginalp Dynamical renormalization group calculation of a two-phase sharp interface model. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  A. Karma,et al.  Quantitative phase-field modeling of dendritic growth in two and three dimensions , 1996 .

[32]  John E. Dolbow,et al.  On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method , 2004 .

[33]  A. Schmidt Computation of Three Dimensional Dendrites with Finite Elements , 1996 .

[34]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[35]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[36]  Nicholas Zabaras,et al.  A stabilized volume‐averaging finite element method for flow in porous media and binary alloy solidification processes , 2004 .

[37]  A. A. Wheeler,et al.  Thermodynamically-consistent phase-field models for solidification , 1992 .

[38]  N. Goldenfeld,et al.  Adaptive Mesh Refinement Computation of Solidification Microstructures Using Dynamic Data Structures , 1998, cond-mat/9808216.

[39]  S. Osher,et al.  An improved level set method for incompressible two-phase flows , 1998 .

[40]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[41]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[42]  S. Osher,et al.  A Simple Level Set Method for Solving Stefan Problems , 1997, Journal of Computational Physics.

[43]  A. Karma,et al.  Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  William L. George,et al.  A Parallel 3D Dendritic Growth Simulator Using the Phase-Field Method , 2002 .

[45]  Gretar Tryggvason,et al.  Numerical simulation of dendritic solidification with convection: three-dimensional flow , 2004 .

[46]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[47]  Gretar Tryggvason,et al.  Numerical simulation of dendritic solidification with convection: two-dimensional geometry , 2002 .