Correlating Growth Characteristics in Atomic Layer Deposition with Precursor Molecular Structure: The Case of Zinc Tin Oxide

The growth characteristics in atomic layer deposition (ALD) of mixed oxide thin films have been investigated by DFT calculations and in situ quadrupole mass spectrometry (QMS) using zinc tin oxide (ZTO) ALD from diethylzinc (DEZn), tetrakis(dimethylamido)tin (TDMASn), and H2O as a case study. The DFT-calculated Gibbs free energies of reaction for binding TDMASn on OH-terminated ZnO surfaces demonstrate the reaction to be feasible and provide evidence for a reduction in surface reaction site density upon mixing a small number of SnOx cycles into the ZnO ALD process. The in situ QMS experiments verify the reduction in surface reaction site density during the SnOx cycle, and demonstrate restoration of reaction site density during the subsequent ZnO cycles. The reduction in reaction site density, which is a consequence of the four exchangeable ligands of the TDMASn precursor, is shown to provide an atomic-level explanation for experimentally observed ZTO ALD growth characteristics. The correlation between pre...

[1]  S. Bent,et al.  Thin film characterization of zinc tin oxide deposited by thermal atomic layer deposition , 2014 .

[2]  S. Bent,et al.  Insights into the Surface Chemistry of Tin Oxide Atomic Layer Deposition from Quantum Chemical Calculations , 2013 .

[3]  S. Bent,et al.  Tin oxide atomic layer deposition from tetrakis(dimethylamino)tin and water , 2013 .

[4]  Jonathan P. Mailoa,et al.  Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells , 2013 .

[5]  S. D. Elliott,et al.  Multiple Proton Diffusion and Film Densification in Atomic Layer Deposition Modeled by Density Functional Theory , 2013 .

[6]  Mikko Ritala,et al.  Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends , 2013 .

[7]  M. Ritala,et al.  In Situ Studies on Reaction Mechanisms in Atomic Layer Deposition , 2013 .

[8]  T. Törndahl,et al.  Growth kinetics, properties, performance, and stability of atomic layer deposition Zn–Sn–O buffer layers for Cu(In,Ga)Se2 solar cells , 2012 .

[9]  J. Elam,et al.  Atomic Layer Deposition of the Quaternary Chalcogenide Cu2ZnSnS4 , 2012 .

[10]  Laura K. Schirra,et al.  Zinc Oxide as a Model Transparent Conducting Oxide: A Theoretical and Experimental Study of the Impact of Hydroxylation, Vacancies, Interstitials, and Extrinsic Doping on the Electronic Properties of the Polar ZnO (0002) Surface , 2012 .

[11]  F. Zaera The Surface Chemistry of Atomic Layer Depositions of Solid Thin Films. , 2012, The journal of physical chemistry letters.

[12]  Tara P. Dhakal,et al.  Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition , 2012 .

[13]  O. Nilsen,et al.  (Invited) Reaction Mechanisms in ALD of Ternary Oxides , 2011 .

[14]  R. Gordon,et al.  \((Sn,Al)O_x\) Films Grown by Atomic Layer Deposition , 2011 .

[15]  Mikko Linnolahti,et al.  Structural principles of semiconducting Group 14 clathrate frameworks. , 2011, Inorganic chemistry.

[16]  Woon-Seop Choi Preparation of Zinc-tin-oxide Thin Film by Using an Atomic Layer Deposition Methodology , 2010 .

[17]  J. Britten,et al.  Investigation of AlMe3, BEt3, and ZnEt2 as Co-Reagents for Low-Temperature Copper Metal ALD/Pulsed-CVD , 2010 .

[18]  Jie Ren Initial growth mechanism of atomic layer deposition of ZnO on the hydroxylated Si(1 0 0)-2×1: A density functional theory study , 2009 .

[19]  F. Zaera The surface chemistry of thin film atomic layer deposition (ALD) processes for electronic device manufacturing , 2008 .

[20]  J. Hupp,et al.  Atomic layer deposition of tin oxide films using tetrakis(dimethylamino) tin , 2008 .

[21]  T. Törndahl,et al.  Atomic layer deposition of Zn1−xMgxO buffer layers for Cu(In,Ga)Se2 solar cells , 2007 .

[22]  S. C. Parker,et al.  Surface structure of (10(-)10) and (11(-)20) surfaces of ZnO with density functional theory and atomistic simulation. , 2006, The journal of physical chemistry. B.

[23]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[24]  S. George,et al.  Properties of ZnO / Al2 O 3 Alloy Films Grown Using Atomic Layer Deposition Techniques , 2003 .

[25]  Steven M. George,et al.  Growth of ZnO/Al2O3 Alloy Films Using Atomic Layer Deposition Techniques , 2003 .

[26]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[27]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[28]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[29]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[30]  G. Yeom,et al.  Aluminum-doped zinc oxide formed by atomic layer deposition for use as anodes in organic light emitting diodes , 2013 .

[31]  S. Campbell,et al.  Atomic layer deposition of Al-doped ZnO films using ozone as the oxygen source: A comparison of two methods to deliver aluminum , 2012 .

[32]  P. Williams,et al.  Atomic Layer Deposition of Gallium-Doped Zinc Oxide Transparent Conducting Oxide films , 2011 .

[33]  Christof Wöll,et al.  The chemistry and physics of zinc oxide surfaces , 2007 .

[34]  S. George,et al.  Surface chemistry and infrared absorbance changes during ZnO atomic layer deposition on ZrO2 and BaTiO3 particles , 2005 .

[35]  Daniel Lincot,et al.  Study of atomic layer epitaxy of zinc oxide by in-situ quartz crystal microgravimetry , 2000 .

[36]  H. Fjellvåg,et al.  Deposition of LaNiO3 thin films in an atomic layer epitaxy reactor , 1997 .