A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing

We present a compactly integrated, 625 MHz clocked coherent one-way quantum key distribution system which continuously distributes secret keys over an optical fibre link. To support high secret key rates, we implemented a fast hardware key distillation engine which allows for key distillation rates up to 4 Mbps in real time. The system employs wavelength multiplexing in order to run over only a single optical fibre. Using fast gated InGaAs single photon detectors, we reliably distribute secret keys with a rate above 21 kbps over 25 km of optical fibre. We optimized the system considering a security analysis that respects finite-key-size effects, authentication costs and system errors for a security parameter of eQKD = 4 × 10−9.

[1]  David Elkouss,et al.  Key Reconciliation for High Performance Quantum Key Distribution , 2013, Scientific Reports.

[2]  J. Skaar,et al.  Effects of detector efficiency mismatch on security of quantum cryptosystems , 2005, quant-ph/0511032.

[3]  V. Scarani,et al.  Fast and simple one-way quantum key distribution , 2005, quant-ph/0506097.

[4]  A R Dixon,et al.  Continuous operation of high bit rate quantum key distribution , 2010, 1005.4573.

[5]  A. Mink,et al.  Programmable instrumentation and gigahertz signaling for single-photon quantum communication systems , 2009 .

[6]  Wei Chen,et al.  2 GHz clock quantum key distribution over 260 km of standard telecom fiber. , 2012, Optics letters.

[7]  Hugo Krawczyk,et al.  LFSR-based Hashing and Authentication , 1994, CRYPTO.

[8]  Vadim Makarov,et al.  Controlling an actively-quenched single photon detector with bright light. , 2008, Optics express.

[9]  J. F. Dynes,et al.  Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography , 2011, 1106.2675.

[10]  Noam Nisan,et al.  The computational complexity of universal hashing , 1990, Proceedings Fifth Annual Structure in Complexity Theory Conference.

[11]  Vadim Makarov,et al.  Erratum: Effects of detector efficiency mismatch on security of quantum cryptosystems [Phys. Rev. A74, 022313 (2006)] , 2008 .

[12]  Le Phuc Thinh,et al.  Security of distributed-phase-reference quantum key distribution. , 2012, Physical review letters.

[13]  Jesus Martinez Mateo,et al.  Key reconciliation for high performance Quantum Key Distribution , 2013 .

[14]  V. Makarov Controlling passively quenched single photon detectors by bright light , 2007, 0707.3987.

[15]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[16]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[17]  A. W. Sharpe,et al.  Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber , 2012, 1212.0033.

[18]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[19]  Richard J. Hughes,et al.  Optical networking for quantum key distribution and quantum communications , 2009 .

[20]  Nicolas Gisin,et al.  Quantum key distribution and 1 Gbps data encryption over a single fibre , 2009, 0912.1798.

[21]  Douglas R. Stinson,et al.  Universal hashing and authentication codes , 1991, Des. Codes Cryptogr..

[22]  A. Burg,et al.  A 15.8 pJ/bit/iter quasi-cyclic LDPC decoder for IEEE 802.11n in 90 nm CMOS , 2010, 2010 IEEE Asian Solid-State Circuits Conference.

[23]  Eleni Diamanti,et al.  Experimental demonstration of long-distance continuous-variable quantum key distribution , 2012, Nature Photonics.

[24]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[25]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..

[26]  Boris Korzh,et al.  A high-speed multi-protocol quantum key distribution transmitter based on a dual-drive modulator. , 2013, Optics express.

[27]  Larry Carter,et al.  New Hash Functions and Their Use in Authentication and Set Equality , 1981, J. Comput. Syst. Sci..

[28]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[29]  N. Gisin,et al.  High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres , 2009, 0903.3907.

[30]  Nicolas Gisin,et al.  Sine gating detector with simple filtering for low-noise infra-red single photon detection at room temperature , 2012, 1205.3084.

[31]  Rute A. S. Ferreira,et al.  UV laser photofabrication of waveguide couplers using self‐patterning organic–inorganic hybrids , 2011 .

[32]  A. Tajima,et al.  High-Speed Quantum Key Distribution System for 1-Mbps Real-Time Key Generation , 2012, IEEE Journal of Quantum Electronics.

[33]  Mark A. Itzler,et al.  Free-running single-photon detection based on a negative feedback InGaAs APD , 2012, 1204.4594.

[34]  J. Skaar,et al.  Tailored bright illumination attack on distributed-phase-reference protocols , 2010, 1012.4366.

[35]  Liu Song-hao,et al.  Plug and Play Systems for Quantum Cryptography , 2004 .

[36]  Gilles Brassard,et al.  Experimental Quantum Cryptography , 1990, EUROCRYPT.

[37]  Nicolas Gisin,et al.  Upper bounds for the security of two distributed-phase reference protocols of quantum cryptography , 2008 .

[38]  G. S. Vernam Cipher printing telegraph systems: For secret wire and radio telegraphic communications , 2022, Journal of the A.I.E.E..

[39]  G. Vilela de Faria,et al.  Active polarization control for quantum communication in long‐distance optical fibers with shared telecom traffic , 2009, 0912.4433.

[40]  Tomohiko Uyematsu,et al.  Secure key rate of the BB84 protocol using finite sample bits , 2010, 2010 IEEE International Symposium on Information Theory.

[41]  Marco Tomamichel,et al.  Tight finite-key analysis for quantum cryptography , 2011, Nature Communications.

[42]  Akihiro Tanaka,et al.  High Speed Quantum Key Distribution System , 2010, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[43]  L. Ioffe,et al.  Physical implementation of protected qubits , 2012, Reports on progress in physics. Physical Society.

[44]  V. Scarani,et al.  Fast and simple one-way quantum key distribution , 2005, quant-ph/0506097.

[45]  T. Symul,et al.  Real time demonstration of high bitrate quantum random number generation with coherent laser light , 2011, 1107.4438.

[46]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[47]  Christopher Portmann,et al.  Key Recycling in Authentication , 2012, IEEE Transactions on Information Theory.