Gradient recovery for elliptic interface problem: II. Immersed finite element methods

Abstract This is the second paper on the study of gradient recovery for elliptic interface problem. In our previous work Guo and Yang (2016) [17] , we developed a novel gradient recovery technique for finite element method based on the body-fitted mesh. In this paper, we propose new gradient recovery methods for two immersed interface finite element methods: symmetric and consistent immersed finite method (Ji et al. (2014) [23] ) and Petrov–Galerkin immersed finite element method (Hou et al. (2004) [22] , and Hou and Liu (2005) [20] ). Compared to the body-fitted mesh based gradient recovery method, the new methods provide a uniform way of recovering gradient on regular meshes. Numerical examples are presented to confirm the superconvergence of both gradient recovery methods. Moreover, they provide asymptotically exact a posteriori error estimators for both immersed finite element methods.

[1]  Xu Yang,et al.  Gradient recovery for elliptic interface problem: III. Nitsche's method , 2017, J. Comput. Phys..

[2]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[3]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[4]  Xiaohong Chen,et al.  Accurate Solution and Gradient Computation for Elliptic Interface Problems with Variable Coefficients , 2017, SIAM J. Numer. Anal..

[5]  Alper Yilmaz,et al.  Level Set Methods , 2007, Wiley Encyclopedia of Computer Science and Engineering.

[6]  Thirupathi Gudi,et al.  A new error analysis for discontinuous finite element methods for linear elliptic problems , 2010, Math. Comput..

[7]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[8]  Zhilin Li,et al.  A Symmetric and Consistent Immersed Finite Element Method for Interface Problems , 2014, J. Sci. Comput..

[9]  Susanne C. Brenner,et al.  Convergence of nonconforming multigrid methods without full elliptic regularity , 1999, Math. Comput..

[10]  Do Y. Kwak,et al.  Optimal convergence analysis of an immersed interface finite element method , 2010, Adv. Comput. Math..

[11]  Zhilin Li,et al.  An immersed finite element space and its approximation capability , 2004 .

[12]  Zhilin Li,et al.  Accurate gradient computations at interfaces using finite element methods , 2017, Int. J. Appl. Math. Comput. Sci..

[13]  Ahmed Naga,et al.  THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .

[14]  Ming-Chih Lai,et al.  ADAPTIVE MESH REFINEMENT FOR ELLIPTIC INTERFACE PROBLEMS USING THE NON-CONFORMING IMMERSED FINITE ELEMENT METHOD , 2011 .

[15]  Zhimin Zhang,et al.  A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..

[16]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[17]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[18]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[19]  So-Hsiang Chou,et al.  Flux Recovery and Superconvergence of Quadratic Immersed Interface Finite Elements , 2015 .

[20]  Zhimin Zhang,et al.  Gradient Recovery for the Crouzeix–Raviart Element , 2015, J. Sci. Comput..

[21]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[22]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .

[23]  Susanne C. Brenner,et al.  Two-level additive Schwarz preconditioners for nonconforming finite element methods , 1996, Math. Comput..

[24]  James H. Bramble,et al.  A finite element method for interface problems in domains with smooth boundaries and interfaces , 1996, Adv. Comput. Math..

[25]  T. Hou,et al.  Removing the Cell Resonance Error in the Multiscale Finite Element Method via a Petrov-Galerkin Formulation , 2004 .

[26]  Kye T. Wee,et al.  An Analysis of a Broken P1-Nonconforming Finite Element Method for Interface Problems , 2009, SIAM J. Numer. Anal..

[27]  Zhimin Zhang,et al.  Superconvergent Two-Grid Methods for Elliptic Eigenvalue Problems , 2017, J. Sci. Comput..

[28]  Zhilin Li The immersed interface method using a finite element formulation , 1998 .

[29]  Stanley Osher,et al.  Level Set Methods , 2003 .

[30]  Peng Song,et al.  A weak formulation for solving elliptic interface problems without body fitted grid , 2013, J. Comput. Phys..

[31]  Ivo Babuska,et al.  The finite element method for elliptic equations with discontinuous coefficients , 1970, Computing.

[32]  Hailong Guo,et al.  Gradient recovery for elliptic interface problem: I. body-fitted mesh , 2016, 1607.05898.

[33]  Ja. A. Roitberg,et al.  a Theorem on Homeomorphisms for Elliptic Systems and its Applications , 1969 .

[34]  Tao Lin,et al.  New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.

[35]  Long Chen,et al.  Adaptive Mesh Refinement and Superconvergence for Two-Dimensional Interface Problems , 2014, SIAM J. Sci. Comput..

[36]  Susanne C. Brenner,et al.  Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..

[37]  So-Hsiang Chou,et al.  An Immersed Linear Finite Element Method with Interface Flux Capturing Recovery , 2012 .

[38]  Xu-dong Liu,et al.  A numerical method for solving variable coefficient elliptic equation with interfaces , 2005 .

[39]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[40]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[41]  Zhilin Li,et al.  The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (Frontiers in Applied Mathematics) , 2006 .

[42]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[43]  Zhiming Chen,et al.  The adaptive immersed interface finite element method for elliptic and Maxwell interface problems , 2009, J. Comput. Phys..

[44]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[45]  C. Peskin The immersed boundary method , 2002, Acta Numerica.