Mutant FUS and ELAVL4 (HuD) Aberrant Crosstalk in Amyotrophic Lateral Sclerosis

[1]  G. Ruocco,et al.  Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS , 2018, Communications Biology.

[2]  G. Sanguinetti,et al.  HuD Is a Neural Translation Enhancer Acting on mTORC1-Responsive Genes and Counteracted by the Y3 Small Non-coding RNA , 2018, Molecular cell.

[3]  I. Bozzoni,et al.  FUS Mutant Human Motoneurons Display Altered Transcriptome and microRNA Pathways with Implications for ALS Pathogenesis , 2017, Stem cell reports.

[4]  H. Watanabe,et al.  3’UTR length-dependent control of SynGAP isoform α2 mRNA by FUS and ELAV-like proteins promotes dendritic spine maturation and cognitive function , 2017, Journal of the Neurological Sciences.

[5]  G. Sobue,et al.  3'UTR Length-Dependent Control of SynGAP Isoform α2 mRNA by FUS and ELAV-like Proteins Promotes Dendritic Spine Maturation and Cognitive Function. , 2017, Cell reports.

[6]  Knut Reinert,et al.  Flexbar 3.0 ‐ SIMD and multicore parallelization , 2017, Bioinform..

[7]  M. Hafner,et al.  PAR-CLIP and streamlined small RNA cDNA library preparation protocol for the identification of RNA binding protein target sites. , 2017, Methods.

[8]  Markus Landthaler,et al.  Transcriptome‐wide Identification of RNA‐binding Protein Binding Sites Using Photoactivatable‐Ribonucleoside‐Enhanced Crosslinking Immunoprecipitation (PAR‐CLIP) , 2017, Current protocols in molecular biology.

[9]  Alessandro Vullo,et al.  Ensembl 2017 , 2016, Nucleic Acids Res..

[10]  Giuseppe Antonacci,et al.  Biomechanics of subcellular structures by non-invasive Brillouin microscopy , 2016, Scientific Reports.

[11]  Alice C. McHardy,et al.  The PARA-suite: PAR-CLIP specific sequence read simulation and processing , 2016, PeerJ.

[12]  Gene W. Yeo,et al.  Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses , 2016, Nature Communications.

[13]  Ewout J. N. Groen,et al.  Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways , 2016, Acta Neuropathologica.

[14]  J. D. Macklis,et al.  Modeling ALS with motor neurons derived from human induced pluripotent stem cells , 2016, Nature Neuroscience.

[15]  Avi Ma'ayan,et al.  Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain , 2016, eLife.

[16]  S. Hammond,et al.  Dysregulated miRNA biogenesis downstream of cellular stress and ALS‐causing mutations: a new mechanism for ALS , 2015, The EMBO journal.

[17]  Marco Y. Hein,et al.  A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation , 2015, Cell.

[18]  I. Bozzoni,et al.  ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons , 2015, Disease Models & Mechanisms.

[19]  G. Sobue,et al.  Position-specific binding of FUS to nascent RNA regulates mRNA length , 2015, Genes & development.

[20]  G. Sobue,et al.  FUS regulates AMPA receptor function and FTLD/ALS-associated behaviour via GluA1 mRNA stabilization , 2015, Nature Communications.

[21]  Niko Beerenwinkel,et al.  BMix: probabilistic modeling of occurring substitutions in PAR-CLIP data , 2015, Bioinform..

[22]  S. Gerstberger,et al.  A census of human RNA-binding proteins , 2014, Nature Reviews Genetics.

[23]  Paul Taylor,et al.  RNA metabolism in neurological disease , 2014, Brain Research.

[24]  I. Bozzoni,et al.  An ALS-associated mutation in the FUS 3′-UTR disrupts a microRNA–FUS regulatory circuitry , 2014, Nature Communications.

[25]  A. Brivanlou,et al.  miR-373 is regulated by TGFβ signaling and promotes mesendoderm differentiation in human Embryonic Stem Cells. , 2014, Developmental biology.

[26]  J. Jankovic,et al.  The role of FUS gene variants in neurodegenerative diseases , 2014, Nature Reviews Neurology.

[27]  G. Hicks,et al.  ALS-Associated FUS Mutations Result in Compromised FUS Alternative Splicing and Autoregulation , 2013, PLoS genetics.

[28]  Ewout J. N. Groen,et al.  ALS-associated mutations in FUS disrupt the axonal distribution and function of SMN. , 2013, Human molecular genetics.

[29]  Christian Haass,et al.  Stress granules in neurodegeneration – lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma , 2013, The FEBS journal.

[30]  D. Cleveland,et al.  Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis , 2013, Neuron.

[31]  B. Jasmin,et al.  Emerging complexity of the HuD/ELAVl4 gene; implications for neuronal development, function, and dysfunction , 2013, RNA.

[32]  H. Okano,et al.  The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis , 2013, Molecular Brain.

[33]  Anna Tramontano,et al.  FIDEA: a server for the functional interpretation of differential expression analysis , 2013, Nucleic Acids Res..

[34]  Ewout J. N. Groen,et al.  Protein aggregation in amyotrophic lateral sclerosis , 2013, Acta Neuropathologica.

[35]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[36]  P. Alexiou,et al.  FUS regulates genes coding for RNA-binding proteins in neurons by binding to their highly conserved introns. , 2013, RNA.

[37]  Rebecca B. Smith,et al.  RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. , 2013, Human molecular genetics.

[38]  I. Bozzoni,et al.  FUS stimulates microRNA biogenesis by facilitating co‐transcriptional Drosha recruitment , 2012, The EMBO journal.

[39]  B. Wolozin Regulated protein aggregation: stress granules and neurodegeneration , 2012, Molecular Neurodegeneration.

[40]  Stephanie C Huelga,et al.  Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs , 2012, Nature Neuroscience.

[41]  Nejc Haberman,et al.  Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain , 2012, Scientific Reports.

[42]  W. Rossoll,et al.  The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth. , 2012, Human molecular genetics.

[43]  Kinji Ohno,et al.  Position-dependent FUS-RNA interactions regulate alternative splicing events and transcriptions , 2012, Scientific Reports.

[44]  C. Haass,et al.  Requirements for Stress Granule Recruitment of Fused in Sarcoma (FUS) and TAR DNA-binding Protein of 43 kDa (TDP-43)* , 2012, The Journal of Biological Chemistry.

[45]  Vincenzo Silani,et al.  TDP-43 and FUS RNA-binding Proteins Bind Distinct Sets of Cytoplasmic Messenger RNAs and Differently Regulate Their Post-transcriptional Fate in Motoneuron-like Cells* , 2012, The Journal of Biological Chemistry.

[46]  C. Sander,et al.  RNA targets of wild-type and mutant FET family proteins , 2011, Nature Structural &Molecular Biology.

[47]  C. Haass,et al.  TDP-43 and FUS: a nuclear affair , 2011, Trends in Neurosciences.

[48]  A. Eisen,et al.  Pathological heterogeneity in amyotrophic lateral sclerosis with FUS mutations: two distinct patterns correlating with disease severity and mutation , 2011, Acta Neuropathologica.

[49]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[50]  I. Mackenzie,et al.  ALS‐associated fused in sarcoma (FUS) mutations disrupt Transportin‐mediated nuclear import , 2010, The EMBO journal.

[51]  D. Cleveland,et al.  TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. , 2010, Human molecular genetics.

[52]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[53]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[54]  P. Anderson,et al.  RNA granules: post-transcriptional and epigenetic modulators of gene expression , 2009, Nature Reviews Molecular Cell Biology.

[55]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[56]  J. Trojanowski,et al.  Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies , 2009, Acta Neuropathologica.

[57]  C. Glass,et al.  Induced ncRNAs Allosterically Modify RNA Binding Proteins in cis to Inhibit Transcription , 2008, Nature.

[58]  Murray Grossman,et al.  TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis , 2008, The Lancet Neurology.

[59]  A. Kakita,et al.  TDP‐43 mutation in familial amyotrophic lateral sclerosis , 2008, Annals of neurology.

[60]  G. Hicks,et al.  The RNA Binding Protein TLS Is Translocated to Dendritic Spines by mGluR5 Activation and Regulates Spine Morphology , 2005, Current Biology.

[61]  G. Owens,et al.  Expression of mRNA for the elav-like neural-specific RNA binding protein, HuD, during nervous system development. , 1998, Brain research. Developmental brain research.

[62]  Edward M Courchaine,et al.  Droplet organelles? , 2016, The EMBO journal.

[63]  Claude-Alain H. Roten,et al.  Theoretical and practical advances in genome halving , 2004 .

[64]  Supplementary Note 1: Longitudinal Modulus , 2022 .

[65]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[66]  M. Pericak-Vance,et al.  Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2009, Science.