Dendritic Spine Dynamics Regulate the Long-Term Stability of Synaptic Plasticity

Long-term synaptic plasticity requires postsynaptic influx of Ca2+ and is accompanied by changes in dendritic spine size. Unless Ca2+ influx mechanisms and spine volume scale proportionally, changes in spine size will modify spine Ca2+ concentrations during subsequent synaptic activation. We show that the relationship between Ca2+ influx and spine volume is a fundamental determinant of synaptic stability. If Ca2+ influx is undercompensated for increases in spine size, then strong synapses are stabilized and synaptic strength distributions have a single peak. In contrast, overcompensation of Ca2+ influx leads to binary, persistent synaptic strengths with double-peaked distributions. Biophysical simulations predict that CA1 pyramidal neuron spines are undercompensating. This unifies experimental findings that weak synapses are more plastic than strong synapses, that synaptic strengths are unimodally distributed, and that potentiation saturates for a given stimulus strength. We conclude that structural plasticity provides a simple, local, and general mechanism that allows dendritic spines to foster both rapid memory formation and persistent memory storage.

[1]  B. McNaughton,et al.  Synaptic enhancement in fascia dentata: Cooperativity among coactive afferents , 1978, Brain Research.

[2]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  G. Lynch,et al.  Intracellular injections of EGTA block induction of hippocampal long-term potentiation , 1983, Nature.

[4]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[5]  L. Cooper,et al.  A physiological basis for a theory of synapse modification. , 1987, Science.

[6]  R. Nicoll,et al.  A persistent postsynaptic modification mediates long-term potentiation in the hippocampus , 1988, Neuron.

[7]  Idan Segev,et al.  Methods in Neuronal Modeling , 1988 .

[8]  KM Harris,et al.  Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  J. Lisman,et al.  A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M. J. Friedlander,et al.  The time course and amplitude of EPSPs evoked at synapses between pairs of CA3/CA1 neurons in the hippocampal slice , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  W. Singer,et al.  Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex , 1990, Nature.

[12]  C. Stevens,et al.  Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  W. J. Nowack Methods in Neuronal Modeling , 1991, Neurology.

[14]  M. Bear,et al.  Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[15]  K. Stratford,et al.  Presynaptic release probability influences the locus of long-term potentiation , 1992, Nature.

[16]  K. Harris,et al.  Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  SM Dudek,et al.  Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  J I Gold,et al.  A model of dendritic spine Ca2+ concentration exploring possible bases for a sliding synaptic modification threshold. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[19]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[20]  D. Johnston,et al.  Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1995, The Journal of physiology.

[21]  Jian Wang,et al.  CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP , 1995, Cell.

[22]  R. Nicoll,et al.  Ca2+ Signaling Requirements for Long-Term Depression in the Hippocampus , 1996, Neuron.

[23]  T. Bartol,et al.  Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[24]  T. Schikorski,et al.  Quantitative Ultrastructural Analysis of Hippocampal Excitatory Synapses Materials and Methods Terminology Fixation and Embedding , 2022 .

[25]  W. Singer,et al.  Relation Between Dendritic Ca2+ Levels and the Polarity of Synaptic Long‐term Modifications in Rat Visual Cortex Neurons , 1997, The European journal of neuroscience.

[26]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[27]  J. Hopfield,et al.  All-or-none potentiation at CA3-CA1 synapses. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[28]  E. Kandel,et al.  Cognitive Neuroscience and the Study of Memory , 1998, Neuron.

[29]  D. Robinson,et al.  Activation and inactivation properties of voltage-gated calcium currents in developing cat retinal ganglion cells , 1998, Neuroscience.

[30]  E Neher,et al.  Usefulness and limitations of linear approximations to the understanding of Ca++ signals. , 1998, Cell calcium.

[31]  R. Huganir,et al.  Activity-Dependent Modulation of Synaptic AMPA Receptor Accumulation , 1998, Neuron.

[32]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[33]  D. Debanne,et al.  Heterogeneity of Synaptic Plasticity at Unitary CA3–CA1 and CA3–CA3 Connections in Rat Hippocampal Slice Cultures , 1999, The Journal of Neuroscience.

[34]  R. Zucker,et al.  Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. , 1999, Journal of neurophysiology.

[35]  Petter Laake,et al.  Different modes of expression of AMPA and NMDA receptors in hippocampal synapses , 1999, Nature Neuroscience.

[36]  R. Zucker Calcium- and activity-dependent synaptic plasticity , 1999, Current Opinion in Neurobiology.

[37]  B. Sakmann,et al.  Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex , 1999, Nature Neuroscience.

[38]  Mark C. W. van Rossum,et al.  Stable Hebbian Learning from Spike Timing-Dependent Plasticity , 2000, The Journal of Neuroscience.

[39]  A. Artola,et al.  Synaptic Activity Modulates the Induction of Bidirectional Synaptic Changes in Adult Mouse Hippocampus , 2000, The Journal of Neuroscience.

[40]  R. Brownstone,et al.  Characterization of calcium currents in functionally mature mouse spinal motoneurons , 2000, The European journal of neuroscience.

[41]  P. Somogyi,et al.  NMDA Receptor Content of Synapses in Stratum Radiatum of the Hippocampal CA1 Area , 2000, The Journal of Neuroscience.

[42]  Yasushi Miyashita,et al.  Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001, Nature Neuroscience.

[43]  Daniel D. Lee,et al.  Equilibrium properties of temporally asymmetric Hebbian plasticity. , 2000, Physical review letters.

[44]  M. W. Brown,et al.  An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat , 2001, The Journal of physiology.

[45]  A. C. Greenwood,et al.  Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. , 2001, Journal of neurophysiology.

[46]  J. Lisman,et al.  A Model of Synaptic Memory A CaMKII/PP1 Switch that Potentiates Transmission by Organizing an AMPA Receptor Anchoring Assembly , 2001, Neuron.

[47]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[48]  Terrence J Sejnowski,et al.  Complexity of calcium signaling in synaptic spines. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[49]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[50]  B. Sakmann,et al.  Molecular dissection of hippocampal theta-burst pairing potentiation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[51]  L. Cooper,et al.  A unified model of NMDA receptor-dependent bidirectional synaptic plasticity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  N. Kasthuri,et al.  Long-term dendritic spine stability in the adult cortex , 2002, Nature.

[53]  Karel Svoboda,et al.  Plasticity of calcium channels in dendritic spines , 2003, Nature Neuroscience.

[54]  Darrell R. Abernethy,et al.  International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels , 2003, Pharmacological Reviews.

[55]  R G M Morris,et al.  Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[56]  G. Augustine,et al.  Local Calcium Signaling in Neurons , 2003, Neuron.

[57]  Haim Sompolinsky,et al.  Learning Input Correlations through Nonlinear Temporally Asymmetric Hebbian Plasticity , 2003, The Journal of Neuroscience.

[58]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[59]  M. J. Friedlander,et al.  The Kinetic Profile of Intracellular Calcium Predicts Long-Term Potentiation and Long-Term Depression , 2004, The Journal of Neuroscience.

[60]  D. Nicholson,et al.  Differences in the expression of AMPA and NMDA receptors between axospinous perforated and nonperforated synapses are related to the configuration and size of postsynaptic densities , 2004, The Journal of comparative neurology.

[61]  K. Svoboda,et al.  The Number of Glutamate Receptors Opened by Synaptic Stimulation in Single Hippocampal Spines , 2004, The Journal of Neuroscience.

[62]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[63]  U. Bhalla Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways. , 2004, Biophysical journal.

[64]  Mu-ming Poo,et al.  Shrinkage of Dendritic Spines Associated with Long-Term Depression of Hippocampal Synapses , 2004, Neuron.

[65]  Upinder S. Bhalla,et al.  Molecular Switches at the Synapse Emerge from Receptor and Kinase Traffic , 2005, PLoS Comput. Biol..

[66]  William A. Catterall,et al.  International Union of Pharmacology. XLVII. Nomenclature and Structure-Function Relationships of Voltage-Gated Sodium Channels , 2005, Pharmacological Reviews.

[67]  W. Gan,et al.  Development of Long-Term Dendritic Spine Stability in Diverse Regions of Cerebral Cortex , 2005, Neuron.

[68]  Karel Svoboda,et al.  NMDA Receptor Subunit-Dependent [Ca2+] Signaling in Individual Hippocampal Dendritic Spines , 2005, The Journal of Neuroscience.

[69]  G. Shepherd,et al.  Transient and Persistent Dendritic Spines in the Neocortex In Vivo , 2005, Neuron.

[70]  Jun Noguchi,et al.  Spine-Neck Geometry Determines NMDA Receptor-Dependent Ca2+ Signaling in Dendrites , 2005, Neuron.

[71]  Bernardo L Sabatini,et al.  Neuronal Activity Regulates Diffusion Across the Neck of Dendritic Spines , 2005, Science.

[72]  Xiao-Jing Wang,et al.  The Stability of a Stochastic CaMKII Switch: Dependence on the Number of Enzyme Molecules and Protein Turnover , 2005, PLoS biology.

[73]  S. Wang,et al.  Dissection of bidirectional synaptic plasticity into saturable unidirectional processes. , 2005, Journal of neurophysiology.

[74]  H. Shouval Clusters of interacting receptors can stabilize synaptic efficacies. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[75]  K. Svoboda,et al.  Spine growth precedes synapse formation in the adult neocortex in vivo , 2006, Nature Neuroscience.

[76]  B. Sakmann,et al.  Spine Ca2+ Signaling in Spike-Timing-Dependent Plasticity , 2006, The Journal of Neuroscience.

[77]  Walter Senn,et al.  Eluding oblivion with smart stochastic selection of synaptic updates. , 2006, Chaos.

[78]  G. Davis Homeostatic control of neural activity: from phenomenology to molecular design. , 2006, Annual review of neuroscience.

[79]  B. Sabatini,et al.  Nonlinear Regulation of Unitary Synaptic Signals by CaV2.3 Voltage-Sensitive Calcium Channels Located in Dendritic Spines , 2007, Neuron.

[80]  Karel Svoboda,et al.  Locally dynamic synaptic learning rules in pyramidal neuron dendrites , 2007, Nature.

[81]  J. Nadal,et al.  What can we learn from synaptic weight distributions? , 2007, Trends in Neurosciences.

[82]  Quan Zou,et al.  Kinetic models of spike-timing dependent plasticity and their functional consequences in detecting correlations , 2007, Biological Cybernetics.

[83]  Qiang Zhou,et al.  Independent Expression of Synaptic and Morphological Plasticity Associated with Long-Term Depression , 2007, The Journal of Neuroscience.

[84]  Rafael Yuste,et al.  Ultrastructure of Dendritic Spines: Correlation Between Synaptic and Spine Morphologies , 2007, Front. Neurosci..

[85]  L. Abbott,et al.  Limits on the memory storage capacity of bounded synapses , 2007, Nature Neuroscience.

[86]  Nicolas Brunel,et al.  STDP in a Bistable Synapse Model Based on CaMKII and Associated Signaling Pathways , 2007, PLoS Comput. Biol..

[87]  P. Lory,et al.  Subunit‐specific modulation of T‐type calcium channels by zinc , 2007, The Journal of physiology.

[88]  E. Schuman,et al.  Effects of N-Cadherin Disruption on Spine Morphological Dynamics , 2007, Frontiers in cellular neuroscience.

[89]  H. Kasai,et al.  Principles of Long-Term Dynamics of Dendritic Spines , 2008, The Journal of Neuroscience.

[90]  Michael D. Ehlers,et al.  Structural plasticity with preserved topology in the postsynaptic protein network , 2008, Proceedings of the National Academy of Sciences.

[91]  Y. Goda,et al.  Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy , 2008, Nature Reviews Neuroscience.

[92]  T. Sejnowski,et al.  Calmodulin Activation by Calcium Transients in the Postsynaptic Density of Dendritic Spines , 2008, PloS one.

[93]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.

[94]  Mark C. W. van Rossum,et al.  Optimal Learning Rules for Discrete Synapses , 2008, PLoS Comput. Biol..

[95]  Yi Zuo,et al.  Spine Neck Plasticity Controls Postsynaptic Calcium Signals through Electrical Compartmentalization , 2008, The Journal of Neuroscience.

[96]  Mark C. W. van Rossum,et al.  Memory retention and spike-timing-dependent plasticity. , 2009, Journal of neurophysiology.

[97]  Graham L. Collingridge,et al.  A nomenclature for ligand-gated ion channels , 2009, Neuropharmacology.

[98]  H. Shouval,et al.  Structural Plasticity Can Produce Metaplasticity , 2009, PloS one.

[99]  Alan Fine,et al.  Expression of Long-Term Plasticity at Individual Synapses in Hippocampus Is Graded, Bidirectional, and Mainly Presynaptic: Optical Quantal Analysis , 2009, Neuron.

[100]  Seok-Jin R. Lee,et al.  Activation of CaMKII in single dendritic spines during long-term potentiation , 2009, Nature.

[101]  N. Ziv,et al.  Long-Term Relationships between Synaptic Tenacity, Synaptic Remodeling, and Network Activity , 2009, PLoS biology.

[102]  Gayle M. Wittenberg,et al.  Spike Timing Dependent Plasticity: A Consequence of More Fundamental Learning Rules , 2010, Front. Comput. Neurosci..

[103]  K. Harris,et al.  Ultrastructural Analysis of Hippocampal Neuropil from the Connectomics Perspective , 2010, Neuron.

[104]  Y. Loewenstein,et al.  Multiplicative Dynamics Underlie the Emergence of the Log-Normal Distribution of Spine Sizes in the Neocortex In Vivo , 2011, The Journal of Neuroscience.