An Approximate Dynamic Programming Approach to Project Scheduling with Uncertain Resource Availabilities

Abstract We study the stochastic resource-constrained project scheduling problem with uncertain resource availability, called SRCPSP-URA, and model it as a sequential decision problem. A new Markov decision process (MDP) model is developed for the SRCPSP-URA. It dynamically and adaptively determines not only which activity to start at a stage, but also which to interrupt and delay when there is not sufficient resource capacity. To tackle the curse-of-dimensionality of an exact solution approach, we devise and implement a rollout-based approximate dynamic programming (ADP) algorithm with priority-rule heuristic as the base policy, for which theoretical sequential improvement property is proved. Computational results show that with moderately more computational time, our ADP algorithm significantly outperforms the priority-rule heuristics for test instances up to 120 activities.

[1]  Ling Wang,et al.  An estimation of distribution algorithm and new computational results for the stochastic resource-constrained project scheduling problem , 2015, Flexible Services and Manufacturing Journal.

[2]  Warren B. Powell,et al.  Handbook of Learning and Approximate Dynamic Programming , 2006, IEEE Transactions on Automatic Control.

[3]  Rolf H. Möhring,et al.  Scheduling with AND/OR Precedence Constraints , 2004, SIAM J. Comput..

[4]  Roel Leus,et al.  Resource‐Constrained Project Scheduling for Timely Project Completion with Stochastic Activity Durations , 2007 .

[5]  R. Bellman Dynamic programming. , 1957, Science.

[6]  Luigi Glielmo,et al.  Allocating resources via price management systems: a dynamic programming-based approach , 2019, Int. J. Control.

[7]  Salim Rostami,et al.  New strategies for stochastic resource-constrained project scheduling , 2017, Journal of Scheduling.

[8]  Roel Leus,et al.  New competitive results for the stochastic resource-constrained project scheduling problem: exploring the benefits of pre-processing , 2011, J. Sched..

[9]  Ikou Kaku,et al.  Shuffled Frog Leaping Algorithm for Preemptive Project Scheduling Problems with Resource Vacations Based on Patterson Set , 2013, J. Appl. Math..

[10]  Willy Herroelen,et al.  Project scheduling under uncertainty: Survey and research potentials , 2005, Eur. J. Oper. Res..

[11]  Marija Katic,et al.  Planning horizons based proactive rescheduling for stochastic resource-constrained project scheduling problems , 2019, Eur. J. Oper. Res..

[12]  Sally A. McKee,et al.  Augmenting priority rule heuristics with justification and rollout to solve the resource-constrained project scheduling problem , 2008, Comput. Oper. Res..

[13]  Erik Demeulemeester,et al.  Time slack-based techniques for robust project scheduling subject to resource uncertainty , 2011, Ann. Oper. Res..

[14]  Douglas D. Gemmill,et al.  Using tabu search to schedule activities of stochastic resource-constrained projects , 1998, Eur. J. Oper. Res..

[15]  Baoding Liu,et al.  Fuzzy project scheduling problem and its hybrid intelligent algorithm , 2010 .

[16]  Erik Demeulemeester,et al.  Project scheduling : a research handbook , 2002 .

[17]  Zhaohan Sheng,et al.  Stochastic Project Scheduling with Hierarchical Alternatives , 2017, Applied Mathematical Modelling.

[18]  Zhe Xu,et al.  New heuristics for the RCPSP with multiple overlapping modes , 2019, Comput. Ind. Eng..

[19]  Franz Josef Radermacher,et al.  Preselective strategies for the optimization of stochastic project networks under resource constraints , 1983, Networks.

[20]  Erik Demeulemeester,et al.  Reactive scheduling in the multi-mode RCPSP , 2011, Comput. Oper. Res..

[21]  Siamak Haji Yakhchali,et al.  On the latest starting times and criticality of activities in a network with imprecise durations , 2010 .

[22]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[23]  Mohamed Haouari,et al.  A two-stage-priority-rule-based algorithm for robust resource-constrained project scheduling , 2008, Comput. Ind. Eng..

[24]  Rolf H. Möhring,et al.  Linear preselective policies for stochastic project scheduling , 2000, Math. Methods Oper. Res..

[25]  Erik Demeulemeester,et al.  A purely proactive scheduling procedure for the resource-constrained project scheduling problem with stochastic activity durations , 2014, Journal of Scheduling.

[26]  Rainer Kolisch,et al.  PSPLIB - A project scheduling problem library: OR Software - ORSEP Operations Research Software Exchange Program , 1997 .

[27]  Warren B. Powell,et al.  “Approximate dynamic programming: Solving the curses of dimensionality” by Warren B. Powell , 2007, Wiley Series in Probability and Statistics.

[28]  Jirachai Buddhakulsomsiri,et al.  Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting , 2006, Eur. J. Oper. Res..

[29]  Erik Demeulemeester,et al.  The proactive and reactive resource-constrained project scheduling problem , 2016, J. Sched..

[30]  R. Kolisch,et al.  Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation , 1996 .

[31]  Erik Demeulemeester,et al.  Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities , 2008, J. Sched..

[32]  D. Malcolm,et al.  Application of a Technique for Research and Development Program Evaluation , 1959 .

[33]  Averill M. Law,et al.  The art and theory of dynamic programming , 1977 .

[34]  Erik Demeulemeester,et al.  Proactive policies for the stochastic resource-constrained project scheduling problem , 2011, Eur. J. Oper. Res..

[35]  Linda K. Nozick,et al.  Project Planning for Construction under Uncertainty with Limited Resources , 2007 .

[36]  Frederik Stork,et al.  Stochastic resource-constrained project scheduling , 2001 .

[37]  Zhi Chen,et al.  Efficient priority rules for the stochastic resource-constrained project scheduling problem , 2018, Eur. J. Oper. Res..

[38]  Ali Forootani,et al.  Approximate dynamic programming for stochastic resource allocation problems , 2020, IEEE/CAA Journal of Automatica Sinica.

[39]  A. Schirmer Resource-constrained project scheduling: An evaluation of adaptive control schemes for parameterized sampling heuristics , 2001 .

[40]  Dimitri P. Bertsekas,et al.  Rollout Algorithms for Stochastic Scheduling Problems , 1999, J. Heuristics.

[41]  Rainer Kolisch,et al.  Experimental investigation of heuristics for resource-constrained project scheduling: An update , 2006, Eur. J. Oper. Res..

[42]  Lauren B. Davis,et al.  A Markov decision process model for equitable distribution of supplies under uncertainty , 2018, Eur. J. Oper. Res..

[43]  Willy Herroelen,et al.  Robust and reactive project scheduling: a review and classification of procedures , 2004 .

[44]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[45]  Jirachai Buddhakulsomsiri,et al.  Priority rule-based heuristic for multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting , 2007, Eur. J. Oper. Res..

[46]  Stefan Creemers,et al.  Minimizing the expected makespan of a project with stochastic activity durations under resource constraints , 2015, J. Sched..

[47]  Warren B. Powell,et al.  An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management: A Case Application , 2009, Transp. Sci..

[48]  Jay H. Lee,et al.  Dynamic programming in a heuristically confined state space: a stochastic resource-constrained project scheduling application , 2004, Comput. Chem. Eng..

[49]  Rainer Kolisch,et al.  Characterization and generation of a general class of resource-constrained project scheduling problems , 1995 .

[50]  Warren B. Powell,et al.  Dynamic-Programming Approximations for Stochastic Time-Staged Integer Multicommodity-Flow Problems , 2006, INFORMS J. Comput..

[51]  Gerald Tesauro,et al.  On-line Policy Improvement using Monte-Carlo Search , 1996, NIPS.

[52]  John N. Tsitsiklis,et al.  Rollout Algorithms for Combinatorial Optimization , 1997, J. Heuristics.

[53]  Yuzhong Zhang,et al.  The distributionally robust optimization model for a remanufacturing system under cap-and-trade policy: a newsvendor approach , 2020, Ann. Oper. Res..

[54]  Mykel J. Kochenderfer,et al.  A comparison of Monte Carlo tree search and rolling horizon optimization for large-scale dynamic resource allocation problems , 2017, Eur. J. Oper. Res..

[55]  Dimitri P. Bertsekas,et al.  Rollout Algorithms for Discrete Optimization: A Survey , 2012 .

[56]  Haitao Li,et al.  Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming , 2015, Eur. J. Oper. Res..

[57]  Erik Demeulemeester,et al.  A computational experiment to explore better robustness measures for project scheduling under two types of uncertain environments , 2019, Comput. Ind. Eng..

[58]  Francisco Ballestín,et al.  When it is worthwhile to work with the stochastic RCPSP? , 2007, J. Sched..

[59]  Erik Demeulemeester,et al.  A tabu search procedure for developing robust predictive project schedules , 2008 .