Ultralow thermal conductivity of BaAg2SnSe4 and the effect of doping by Ga and In

[1]  Junyou Yang,et al.  Reinforced bond covalency and multiscale hierarchical architecture to high performance eco-friendly MnTe-based thermoelectric materials , 2019, Nano Energy.

[2]  M. Kanatzidis,et al.  High Thermoelectric Performance in the Wide Band‐Gap AgGa1‐xTe2 Compounds: Directional Negative Thermal Expansion and Intrinsically Low Thermal Conductivity , 2018, Advanced Functional Materials.

[3]  Haijun Wu,et al.  Intrinsically Low Thermal Conductivity in BiSbSe3: A Promising Thermoelectric Material with Multiple Conduction Bands , 2018, Advanced Functional Materials.

[4]  Di Li,et al.  Achieving high thermoelectric performance with Pb and Zn codoped polycrystalline SnSe via phase separation and nanostructuring strategies , 2018, Nano Energy.

[5]  Yue Chen,et al.  Manipulation of Band Structure and Interstitial Defects for Improving Thermoelectric SnTe , 2018, Advanced Functional Materials.

[6]  M. Kanatzidis,et al.  High Thermoelectric Performance in Supersaturated Solid Solutions and Nanostructured n‐Type PbTe–GeTe , 2018, Advanced Functional Materials.

[7]  Wolfgang G. Zeier,et al.  Crystal Structure Induced Ultralow Lattice Thermal Conductivity in Thermoelectric Ag9AlSe6 , 2018 .

[8]  M. Kanatzidis,et al.  Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance. , 2018, Journal of the American Chemical Society.

[9]  Jiong Yang,et al.  Intrinsically High Thermoelectric Performance in AgInSe2 n‐Type Diamond‐Like Compounds , 2017, Advanced science.

[10]  G. J. Snyder,et al.  Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence , 2017, Advanced materials.

[11]  C. Uher,et al.  Intrinsically low thermal conductivity from a quasi-one-dimensional crystal structure and enhanced electrical conductivity network via Pb doping in SbCrSe3 , 2017 .

[12]  Haijun Wu,et al.  Mg vacancy and dislocation strains as strong phonon scatterers in Mg2Si1−xSbx thermoelectric materials , 2017 .

[13]  Youwei Du,et al.  Realizing High Figure of Merit in Phase-Separated Polycrystalline Sn1-xPbxSe. , 2016, Journal of the American Chemical Society.

[14]  Di Wu,et al.  Origin of low thermal conductivity in SnSe , 2016 .

[15]  M. Kanatzidis,et al.  Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. , 2016, Angewandte Chemie.

[16]  C. Uher,et al.  Recent advances in high-performance bulk thermoelectric materials , 2016 .

[17]  Lidong Chen,et al.  Cu-based thermoelectric materials , 2016 .

[18]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[19]  Lianjun Wang,et al.  Improved Thermoelectric Performance of Silver Nanoparticles‐Dispersed Bi2Te3 Composites Deriving from Hierarchical Two‐Phased Heterostructure , 2015 .

[20]  M. Kanatzidis,et al.  SnTe–AgBiTe2 as an efficient thermoelectric material with low thermal conductivity , 2014 .

[21]  Lidong Chen,et al.  Sulfide bornite thermoelectric material: a natural mineral with ultralow thermal conductivity , 2014 .

[22]  G. J. Snyder,et al.  Optimum Carrier Concentration in n‐Type PbTe Thermoelectrics , 2014 .

[23]  Stefano Curtarolo,et al.  Low thermal conductivity and triaxial phononic anisotropy of SnSe , 2014, 1406.3532.

[24]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[25]  M. Kanatzidis,et al.  Controlling Metallurgical Phase Separation Reactions of the Ge0.87Pb0.13Te Alloy for High Thermoelectric Performance , 2013 .

[26]  G. J. Snyder,et al.  High Thermoelectric Efficiency of n‐type PbS , 2013 .

[27]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[28]  Qingjie Zhang,et al.  Microstructure and thermoelectric properties of CoSb2.75Ge0.25−xTex prepared by rapid solidification , 2012 .

[29]  D. S. Sanditov,et al.  Relation between the parameters of the elasticity theory and averaged bulk modulus of solids , 2011 .

[30]  Y. Bréchet,et al.  Nanostructuration via solid state transformation as a strategy for improving the thermoelectric efficiency of PbTe alloys , 2011 .

[31]  C. Uher,et al.  Thermoelectric Properties and Investigations of Low Thermal Conductivity in Ga-doped Cu2GeSe3 , 2011 .

[32]  Paweł T. Jochym,et al.  Equivalence of the boson peak in glasses to the transverse acoustic van Hove singularity in crystals. , 2011, Physical review letters.

[33]  J. Shim,et al.  Enhancement of the Thermoelectric Figure‐of‐Merit in a Wide Temperature Range in In4Se3–xCl0.03 Bulk Crystals , 2011, Advanced materials.

[34]  G. J. Snyder,et al.  Heavily Doped p‐Type PbSe with High Thermoelectric Performance: An Alternative for PbTe , 2011, Advanced materials.

[35]  Wei Liu,et al.  Thermoelectric Properties of Sb-Doped Mg2Si0.3Sn0.7 , 2011 .

[36]  Hsin Wang,et al.  Thermoelectric properties of polycrystalline In4Se3 and In4Te3 , 2010 .

[37]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[38]  T. Tritt,et al.  Probing lattice dynamics of Cd 2 Re 2 O 7 pyrochlore: Thermal transport and thermodynamics study , 2010 .

[39]  G. Kotliar,et al.  Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals , 2009, Nature.

[40]  D. Morelli,et al.  Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. , 2008, Physical review letters.

[41]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[42]  S. Yamanaka,et al.  Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity , 2005 .

[43]  A. Assoud,et al.  New Quaternary Barium Copper/Silver Selenostannates: Different Coordination Spheres, Metal−Metal Interactions, and Physical Properties , 2005 .

[44]  B. Sales,et al.  Atomic Displacement Parameters and the Lattice Thermal Conductivity of Clathrate-like Thermoelectric Compounds , 1999 .

[45]  Georg Kresse,et al.  Why clathrates are good thermoelectrics: A theoretical study of Sr8Ga16Ge30 , 1999 .

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[48]  B. Champagnon,et al.  Granular structure and fractal domains of silica aerogels , 1990 .

[49]  A. Dianoux,et al.  Neutron Scattering Study of the Low-Frequency Vibrations in Vitreous Silica , 1984 .