Evaluating tone mapping algorithms for rendering non-pictorial (scientific) high-dynamic-range images

Nine algorithms were implemented to overcome the problem associated with rendering high-dynamic-range scientific imagery to low-dynamic-range display devices. The algorithms were evaluated using two paired-comparison psychophysical experiments judging preference and "scientific usefulness". The results showed that, on average, the Zone System algorithm performed best and the Local Color Correction method performed the worst. However, the performance of the algorithms depended on the type of data being visualized. The low correlation between the preference and scientific usefulness judgments (R2=0.31) indicated that observers used different criteria when judging the image preference versus scientific usefulness. The experiment was repeated using expert observers (radiologists) for an MR scan (Medical image). The results showed that the radiologists used similar criteria as the non-expert observers when judging the usefulness of the rendered images. A target detection experiment was conducted to measure the detectability of an embedded target in the Medical image. The result of the target detection experiment illustrated that the detectability of targets in the image is greatly influenced by the rendering algorithms due to the inherent difference in tone mapping among the algorithms.

[1]  Donald P. Greenberg,et al.  A model of visual adaptation for realistic image synthesis , 1996, SIGGRAPH.

[2]  Ethan D. Montag The Use of Color in Multidimensional Graphical Information Display , 1999, Color Imaging Conference.

[3]  Nathan Moroney,et al.  Local Color Correction Using Non-Linear Masking , 2000, CIC.

[4]  R. Shapley Retinal physiology: Adapting to the changing scene , 1997, Current Biology.

[5]  L. Spillmann,et al.  Visual Perception: The Neurophysiological Foundations , 1989 .

[6]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[7]  Hiroshi Yamaguchi,et al.  Testing HDR Image Rendering Algorithms , 2004, CIC.

[8]  Mark D. Fairchild,et al.  Meet iCAM: An Image Color Appearance Model , 2008 .

[9]  J. Victor,et al.  Dynamic shifts of the contrast-response function , 1997, Visual Neuroscience.

[10]  Mark D. Fairchild,et al.  The iCAM Framework for Image Appearance, Image Differences, and Image Quality , 2002 .

[11]  Ethan D. Montag,et al.  Empirical formula for creating error bars for the method of paired comparison , 2006, J. Electronic Imaging.

[12]  西里 静彦,et al.  Elements of dual scaling : an introduction to practical data analysis , 1994 .

[13]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[14]  Erik Reinhard,et al.  Photographic tone reproduction for digital images , 2002, ACM Trans. Graph..

[15]  Ethan D. Montag,et al.  Louis Leon Thurstone in Monte Carlo: creating error bars for the method of paired comparison , 2003, IS&T/SPIE Electronic Imaging.

[16]  Barry B. Lee,et al.  The time course of adaptation in macaque retinal ganglion cells , 1996, Vision Research.

[17]  R. J. Koshel,et al.  Subtractive processes in light adaptation , 1992, Vision Research.

[18]  Peter G. Engeldrum,et al.  Psychometric Scaling: A Toolkit for Imaging Systems Development , 2000 .

[19]  Joseph P. Hornak,et al.  The Basics of MRI , 2003, WWW 2003.

[20]  Werner Purgathofer,et al.  Tone Reproduction and Physically Based Spectral Rendering , 2002, Eurographics.

[21]  L. Kaufman,et al.  Handbook of perception and human performance , 1986 .

[22]  F. Billmeyer Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed., by Gunter Wyszecki and W. S. Stiles, John Wiley and Sons, New York, 1982, 950 pp. Price: $75.00 , 1983 .

[23]  Ann McNamara,et al.  Visual Perception in Realistic Image Synthesis , 2001, Comput. Graph. Forum.

[24]  Brian A. Wandell,et al.  Rendering high dynamic range images , 2000, Electronic Imaging.

[25]  Ehsan Samei,et al.  Optimal display processing for digital radiography , 2001, SPIE Medical Imaging.

[26]  Glenn Kennel,et al.  Contrast sensitivity experiment to determine the bit depth for digital cinema , 2004 .

[27]  Adobe Creative Team Adobe Photoshop 6.0 Classroom in a Book , 1998 .

[28]  Shree K. Nayar,et al.  High dynamic range imaging: spatially varying pixel exposures , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[29]  Donald C. Hood,et al.  Sensitivity to Light , 1986 .

[30]  Mark D. Fairchild,et al.  Rendering HDR Images , 2003, CIC.

[31]  Edward Muka,et al.  Human visual system intrascene luminance dynamic range , 2002, SPIE Medical Imaging.

[32]  Peter G. J. Barten,et al.  Physical model for the contrast sensitivity of the human eye , 1992, Electronic Imaging.

[33]  Roy S. Berns,et al.  Colorimetric Characterization of a Computer-Controlled Liquid Crystal Display , 2004 .

[34]  Geoffrey M. Boynton,et al.  Forward pattern masking and adaptation: Effects of duration, interstimulus interval, contrast, and spatial and temporal frequency , 1993, Vision Research.

[35]  Feng Xiao,et al.  High Dynamic Range Imaging of Natural Scenes , 2002, CIC.

[36]  Philip T. Kortum,et al.  Adaptation mechanisms in spatial vision—ii. Flash thresholds and background adaptation , 1995, Vision Research.

[37]  Mark D. Fairchild,et al.  Image lightness rescaling using sigmoidal contrast enhancement functions , 1999, J. Electronic Imaging.

[38]  Alexei A. Efros,et al.  Fast bilateral filtering for the display of high-dynamic-range images , 2002 .

[39]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[40]  J. B. Martens,et al.  An object-oriented model for brightness perception. , 1990, Spatial vision.

[41]  Edward Muka,et al.  Reconsidering bit depth for medial images: Is eight enough? , 2002, SPIE Medical Imaging.

[42]  Donald C. Hood,et al.  THE CONTROL OF VISUAL SENSITIVITY , 1990 .

[43]  Jitendra Malik,et al.  Recovering high dynamic range radiance maps from photographs , 1997, SIGGRAPH '08.

[44]  J. L. Schnapf,et al.  5 – THE CONTROL OF VISUAL SENSITIVITY: Receptoral and Postreceptoral Processes , 1990 .

[45]  J. Cohen,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulas , 1968 .

[46]  Donald P. Greenberg,et al.  A multiscale model of adaptation and spatial vision for realistic image display , 1998, SIGGRAPH.

[47]  N. Graham,et al.  Probed-sinewave Paradigm: a Test of Models of Light-adaptation Dynamics , 1997, Vision Research.