Plant retrotransposons.

Retrotransposons are mobile genetic elements that transpose through reverse transcription of an RNA intermediate. Retrotransposons are ubiquitous in plants and play a major role in plant gene and genome evolution. In many cases, retrotransposons comprise over 50% of nuclear DNA content, a situation that can arise in just a few million years. Plant retrotransposons are structurally and functionally similar to the retrotransposons and retroviruses that are found in other eukaryotic organisms. However, there are important differences in the genomic organization of retrotransposons in plants compared to some other eukaryotes, including their often-high copy numbers, their extensively heterogeneous populations, and their chromosomal dispersion patterns. Recent studies are providing valuable insights into the mechanisms involved in regulating the expression and transposition of retrotransposons. This review describes the structure, genomic organization, expression, regulation, and evolution of retrotransposons, and discusses both their contributions to plant genome evolution and their use as genetic tools in plant biology.

[1]  V. Chandler,et al.  Paramutation and related allelic interactions. , 1997, Trends in genetics : TIG.

[2]  I. Arkhipova,et al.  Promoting in Tandem: The Promoter for Telomere Transposon HeT-A and Implications for the Evolution of Retroviral LTRs , 1997, Cell.

[3]  J. Bennetzen,et al.  Structure and coding properties of Bs1, a maize retrovirus-like transposon. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[4]  L. Loguercio,et al.  Structural analysis of a hmg-coA-reductase pseudogene: insights into evolutionary processes affecting the hmgr gene family in allotetraploid cotton (Gossypium hirsutum L.) , 1998, Current Genetics.

[5]  H. Hirochika,et al.  Autonomous transposition of the tobacco retrotransposon Tto1 in rice. , 1996, The Plant cell.

[6]  M. S. Johnson,et al.  The core domain of retrotransposon integrase in Hordeum: predicted structure and evolution. , 1998, Molecular biology and evolution.

[7]  J. Brandle,et al.  Isolation and characterization of Tnd-1, a retrotransposon marker linked to black root rot resistance in tobacco , 1999, Theoretical and Applied Genetics.

[8]  J. Boeke,et al.  Transcription and reverse transcription of retrotransposons. , 1989, Annual review of microbiology.

[9]  S. Sandmeyer,et al.  Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element , 1995, Science.

[10]  M. Grandbastien,et al.  Activation of the Promoter of the Tnt1 Retrotransposon in Tomato After Inoculation with the Fungal Pathogen Cladosporium fulvum , 1999 .

[11]  J. Bennetzen The structure and evolution of angiosperm nuclear genomes. , 1998, Current opinion in plant biology.

[12]  S. Martin,et al.  Tightly regulated, developmentally specific expression of the first open reading frame from LINE-1 during mouse embryogenesis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[13]  V. Corces,et al.  Transposable element-host interactions: regulation of insertion and excision. , 1997, Annual review of genetics.

[14]  A. Schulman,et al.  IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques , 1999, Theoretical and Applied Genetics.

[15]  M W Simmen,et al.  Nonmethylated transposable elements and methylated genes in a chordate genome. , 1999, Science.

[16]  K. Kasschau,et al.  Cell-to-Cell and Long-Distance Transport of Viruses in Plants. , 1996, The Plant cell.

[17]  J. Deragon,et al.  Similar Target Site Selection Occurs in Integration of Plant and Mammalian Retroposons , 1998, Journal of Molecular Evolution.

[18]  G. Drouin,et al.  A plant processed pseudogene , 1987, Nature.

[19]  J. Bennetzen,et al.  Gene identification in a complex chromosomal continuum by local genomic cross-referencing. , 1996, The Plant journal : for cell and molecular biology.

[20]  M. Knox,et al.  Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea , 1998, Molecular and General Genetics MGG.

[21]  Qifa Zhang,et al.  The distribution and copy number of copia-like retrotransposons in rice (Oryza sativa L.) and their implications in the organization and evolution of the rice genome. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  T. Nagamine,et al.  p-SINE1-like intron of the CatA catalase homologs and phylogenetic relationships among AA-genome Oryza and related species , 1999, Theoretical and Applied Genetics.

[23]  U. Kück,et al.  Transposons in filamentous fungi—facts and perspectives , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[24]  K. McLean,et al.  Genetic distribution of Bare–1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP) , 1997, Molecular and General Genetics MGG.

[25]  N. Okada,et al.  SINEs and LINEs share common 3' sequences: a review. , 1997, Gene.

[26]  D. Voytas,et al.  A single amino acid change in the yeast retrotransposon Ty5 abolishes targeting to silent chromatin. , 1998, Molecular cell.

[27]  J. Birchler,et al.  Cosuppression in Drosophila: Gene Silencing of Alcohol dehydrogenase by white-Adh Transgenes Is Polycomb Dependent , 1997, Cell.

[28]  C. Schmid,et al.  Does SINE evolution preclude Alu function? , 1998, Nucleic acids research.

[29]  D. Voytas,et al.  Multiple non-LTR retrotransposons in the genome of Arabidopsis thaliana. , 1996, Genetics.

[30]  A. Razin,et al.  CpG methylation, chromatin structure and gene silencing—a three‐way connection , 1998, The EMBO journal.

[31]  K. Tsunewaki,et al.  Evolutionary dynamics of Ty1-copia group retrotransposons in grass shown by reverse transcriptase domain analysis. , 1999, Molecular biology and evolution.

[32]  J. S. Heslop-Harrison,et al.  Characterisation and physical localisation of Ty1-copia-like retrotransposons in four Alstroemeria species. , 1998, Genome.

[33]  S. Warwick,et al.  Evolution of SINE S1 retroposons in Cruciferae plant species. , 1997, Molecular biology and evolution.

[34]  J. Bennetzen,et al.  Specificity and regulation of the Mutator transposable element system in maize , 1993 .

[35]  H. Hirochika,et al.  Retrotransposons of rice involved in mutations induced by tissue culture. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[36]  G. Presting,et al.  A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. , 1998, The Plant journal : for cell and molecular biology.

[37]  I. Leitch,et al.  Polyploidy in angiosperms , 1997 .

[38]  D. Voytas,et al.  A copia-like transposable element family in Arabidopsis thaliana , 1988, Nature.

[39]  D. Voytas,et al.  A superfamily of Arabidopsis thaliana retrotransposons. , 1991, Genetics.

[40]  M. Matzke,et al.  Position effects and epigenetic silencing of plant transgenes. , 1998, Current opinion in plant biology.

[41]  R. Michelmore,et al.  The Major Resistance Gene Cluster in Lettuce Is Highly Duplicated and Spans Several Megabases , 1998, Plant Cell.

[42]  M. Matsuoka,et al.  Loss‐of‐function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants , 1999, The EMBO journal.

[43]  A. Flavell,et al.  Plant transposable elements and the genome. , 1994, Current opinion in genetics & development.

[44]  A. Brennicke,et al.  The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides , 1997, Nature Genetics.

[45]  R. Motohashi,et al.  Structures and distribution of p-SINE1 members in rice genomes , 1997, Theoretical and Applied Genetics.

[46]  J. Bennetzen,et al.  Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bs1 retroelement of maize. , 1994, The Plant cell.

[47]  I. K. Jordan,et al.  Evidence for the Role of Recombination in the Regulatory Evolution of Saccharomyces cerevisiae Ty Elements , 1998, Journal of Molecular Evolution.

[48]  S. Wessler,et al.  Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[49]  M. Grandbastien,et al.  The evolutionary analysis of the Tnt1 retrotransposon in Nicotiana species reveals the high variability of its regulatory sequences. , 1998, Molecular biology and evolution.

[50]  B. Wakimoto,et al.  Beyond the Nucleosome: Epigenetic Aspects of Position–Effect Variegation in Drosophila , 1998, Cell.

[51]  M. Freeling,et al.  A low copy number, copia‐like transposon in maize. , 1985, The EMBO journal.

[52]  J. Boeke,et al.  Replication infidelity during a single cycle of Ty1 retrotransposition. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[53]  A. Flavell,et al.  Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes , 1999, Molecular and General Genetics MGG.

[54]  J. Boeke,et al.  An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. , 1994, Genes & development.

[55]  T. Eickbush,et al.  Origin and evolution of retroelements based upon their reverse transcriptase sequences. , 1990, The EMBO journal.

[56]  H. Temin Origin of retroviruses from cellular moveable genetic elements , 1980, Cell.

[57]  K. Noma,et al.  Non-LTR retrotransposons (LINEs) as ubiquitous components of plant genomes , 1999, Molecular and General Genetics MGG.

[58]  R. Phillips,et al.  Complex structure of knob DNA on maize chromosome 9. Retrotransposon invasion into heterochromatin. , 1998, Genetics.

[59]  M. Morgante,et al.  Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. , 1999, The Plant journal : for cell and molecular biology.

[60]  H. Hirochika,et al.  Extrachromosomal circular forms of the tobacco retrotransposon Tto1. , 1995, Gene.

[61]  Eviatar Nevo,et al.  Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum , 1999, Plant Cell.

[62]  V. Williamson,et al.  Transposable elements in yeast. , 1983, International review of cytology.

[63]  E. Ohtsubo,et al.  Identification and characterization of novel retrotransposons of the gypsy type in rice , 1999, Molecular and General Genetics MGG.

[64]  Phillip SanMiguel,et al.  Evidence that a Recent Increase in Maize Genome Size was Caused by the Massive Amplification of Intergene Retrotransposons , 1998 .

[65]  M J Varagona,et al.  Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. , 1992, The Plant cell.

[66]  P. Schulze-Lefert,et al.  A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. , 1998, Nucleic acids research.

[67]  M. Grunstein Yeast Heterochromatin: Regulation of Its Assembly and Inheritance by Histones , 1998, Cell.

[68]  M. Grandbastien,et al.  Characterisation of LTR sequences involved in the protoplast specific expression of the tobacco Tnt1 retrotransposon. , 1993, Nucleic acids research.

[69]  A. Schulman,et al.  Gypsy-like retrotransposons are widespread in the plant kingdom. , 1998, The Plant journal : for cell and molecular biology.

[70]  S. Wessler,et al.  Extreme structural heterogeneity among the members of a maize retrotransposon family. , 1998, Genetics.

[71]  J. S. Heslop-Harrison,et al.  The Ty1-copia group retrotransposons in Vicia species: Copy number, sequence heterogeneity and chromosomal localisation , 1996 .

[72]  R. O’Neill,et al.  Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid , 1998, Nature.

[73]  S. Wessler,et al.  Molecular evolution of magellan, a maize Ty3/gypsy-like retrotransposon. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[74]  D. Smyth,et al.  Plant retrotransposon from Lilium henryi is related to Ty3 of yeast and the gypsy group of Drosophila. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[75]  O. Riera-Lizarazu,et al.  Oat-maize chromosome addition lines: a new system for mapping the maize genome. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[76]  T. Heidmann,et al.  Taming of transposable elements by homology-dependent gene silencing , 1999, Nature Genetics.

[77]  A. Flavell,et al.  Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. , 1998, The Plant journal : for cell and molecular biology.

[78]  D. Mager,et al.  Functional heterogeneity of a large family of human LTR-like promoters and enhancers. , 1990, Nucleic acids research.

[79]  D. Voytas,et al.  copia-like retrotransposons are ubiquitous among plants. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Steven Henikoff,et al.  Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila , 1994, Cell.

[81]  S. Wessler,et al.  LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. , 1995, Current opinion in genetics & development.

[82]  Takashi Yamada,et al.  Zepp, a LINE‐like retrotransposon accumulated in the Chlorella telomeric region , 1997, The EMBO journal.

[83]  M. G. Kidwell,et al.  Transposable elements as sources of variation in animals and plants. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[84]  B. Ganem RNA world , 1987, Nature.

[85]  A. Schulman,et al.  Bare-1 insertion site preferences and evolutionary conservation of RNA and cDNA processing sites , 2004, Genetica.

[86]  S. Scherer,et al.  Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas , 1997, Nature Genetics.

[87]  Albert Spielmann,et al.  Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics , 1989, Nature.

[88]  H. Hirochika Activation of tobacco retrotransposons during tissue culture. , 1993, The EMBO journal.

[89]  J. Haber,et al.  Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks , 1996, Nature.

[90]  D. Voytas,et al.  Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. , 1998, Genetics.

[91]  C. Dumas,et al.  A functional S locus anther gene is not required for the self-incompatibility response in Brassica oleracea. , 1997, The Plant cell.

[92]  N. Craig Target site selection in transposition. , 1997, Annual review of biochemistry.

[93]  A. Flavell,et al.  Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. , 1999, The Plant journal : for cell and molecular biology.

[94]  W. Doolittle,et al.  Selfish genes, the phenotype paradigm and genome evolution , 1980, Nature.

[95]  M. Caboche,et al.  Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. , 1991, The EMBO journal.

[96]  H. Saedler,et al.  Similarity of the Cin1 repetitive family of Zea mays to eukaryotic transposable elements , 1984, Nature.

[97]  Stephen M. Mount,et al.  Complete nucleotide sequence of the Drosophila transposable element copia: homology between copia and retroviral proteins , 1985, Molecular and cellular biology.

[98]  J. Bennetzen,et al.  The contributions of retroelements to plant genome organization, function and evolution. , 1996, Trends in microbiology.

[99]  G. Igloi,et al.  Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. , 1995, Journal of molecular biology.

[100]  T. Eickbush,et al.  Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition , 1993, Cell.

[101]  S. Wessler,et al.  Transposon signatures: species‐specific molecular markers that utilize a class of multiple‐copy nuclear DNA , 1995, Molecular ecology.

[102]  T. Eickbush Telomerase and Retrotransposons: Which Came First? , 1997, Science.

[103]  D. Voytas,et al.  The structure, distribution and evolution of the Ta1 retrotransposable element family of Arabidopsis thaliana. , 1990, Genetics.

[104]  Amar Kumar The evolution of plant retroviruses: moving to green pastures , 1998 .

[105]  D. Voytas,et al.  Silent chromatin determines target preference of the Saccharomyces retrotransposon Ty5. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[106]  M. Grandbastien Activation of plant retrotransposons under stress conditions , 1998 .

[107]  R. Martienssen Epigenetic phenomena: Epigenetic phenomena: Paramutation and gene silencing in plants , 1996, Current Biology.

[108]  E. Gaucher,et al.  SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope-like protein. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[109]  H. Lipshitz,et al.  Spatially regulated expression of retrovirus-like transposons during Drosophila melanogaster embryogenesis. , 1994, Genetical research.

[110]  S. Wessler,et al.  A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[111]  J. S. Heslop-Harrison,et al.  The genomic and physical organization of Ty1-copia-like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[112]  M. Hattori,et al.  RNA polymerase III dependence of the human L1 promoter and possible participation of the RNA polymerase II factor YY1 in the RNA polymerase III transcription system. , 1995, Nucleic acids research.

[113]  B. Mcclintock,et al.  The significance of responses of the genome to challenge. , 1984, Science.

[114]  F. Crick,et al.  Selfish DNA: the ultimate parasite , 1980, Nature.

[115]  J. McDonald,et al.  Analysis of copia sequence variation within and between Drosophila species. , 1995, Molecular biology and evolution.

[116]  S. Wessler,et al.  Transduction of a cellular gene by a plant retroelement , 1994, Cell.

[117]  J. Bennetzen,et al.  Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[118]  J. S. Heslop-Harrison,et al.  Chromosomal and genomic organization of Ty1-copia-like retrotransposon sequences in the genus Avena. , 1996, Genome.

[119]  K. Noma,et al.  RIRE1, a retrotransposon from wild rice Oryza australiensis. , 1997, Genes & genetic systems.

[120]  J. Bennetzen,et al.  Nested Retrotransposons in the Intergenic Regions of the Maize Genome , 1996, Science.

[121]  F. Feuerbach,et al.  Retrovirus-like end processing of the tobacco Tnt1 retrotransposon linear intermediates of replication , 1997, Journal of virology.

[122]  D. Voytas,et al.  Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. , 1998, Genome research.

[123]  M. Grandbastien Retroelements in higher plants. , 1992, Trends in genetics : TIG.

[124]  J. Pozueta-Romero,et al.  Identification of a short interspersed repetitive element in partially spliced transcripts of the bell pepper (Capsicum annuum) PAP gene: new evolutionary and regulatory aspects on plant tRNA-related SINEs. , 1998, Gene.

[125]  P. Piffanelli,et al.  Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana , 1998, Nature.

[126]  A. Smit,et al.  The origin of interspersed repeats in the human genome. , 1996, Current opinion in genetics & development.

[127]  A. Flavell,et al.  Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. , 1992, Nucleic acids research.

[128]  C. Walsh,et al.  Cytosine methylation and the ecology of intragenomic parasites. , 1997, Trends in genetics : TIG.

[129]  J. Bennetzen,et al.  Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. , 1994, Genome.

[130]  T. Eickbush Transposing without ends: the non-LTR retrotransposable elements. , 1992, The New biologist.

[131]  Phillip SanMiguel,et al.  The paleontology of intergene retrotransposons of maize , 1998, Nature Genetics.

[132]  M. Grandbastien,et al.  Microbial elicitors of plant defence responses activate transcription of a retrotransposon , 1994 .

[133]  Takashi Yamada,et al.  Molecular anatomy of a small chromosome in the green alga Chlorella vulgaris. , 1998, Nucleic acids research.

[134]  J. Bennetzen,et al.  Colinearity and its exceptions in orthologous adh regions of maize and sorghum. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[135]  R. Flavell,et al.  A family of retrotransposons and associated genomic variation in wheat. , 1991, Genomics.

[136]  D. Garfinkel,et al.  New lines of host defense: inhibition of Ty1 retrotransposition by Fus3p and NER/TFIIH. , 1999, Trends in genetics : TIG.

[137]  J. Bennetzen,et al.  Sequence organization and conservation in sh2/a1-homologous regions of sorghum and rice. , 1998, Genetics.

[138]  A. Flavell,et al.  Characterization and genomic organization of Ty1-copia group retrotransposons in rye (Secale cereale). , 1997, Genome.

[139]  Shiping Zhang,et al.  Xa21D Encodes a Receptor-like Molecule with a Leucine-Rich Repeat Domain That Determines Race-Specific Recognition and Is Subject to Adaptive Evolution , 1998, Plant Cell.

[140]  H. Hirochika,et al.  A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. , 1999, The Plant journal : for cell and molecular biology.

[141]  H. Dooner,et al.  Transposition Pattern of the Maize Element Ac from the Bz-M2(ac) Allele. , 1989, Genetics.

[142]  I. K. Jordan,et al.  Tempo and mode of Ty element evolution in Saccharomyces cerevisiae. , 1999, Genetics.

[143]  M Caboche,et al.  RNA‐mediated transposition of the tobacco retrotransposon Tnt1 in Arabidopsis thaliana. , 1995, The EMBO journal.

[144]  S. Jackson,et al.  Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. , 1998, Genetics.

[145]  N. Okada,et al.  Molecular characterization of a short interspersed repetitive element from tobacco that exhibits sequence homology to specific tRNAs. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[146]  Dmitrii Petrov,et al.  Slow but Steady: Reduction of Genome Size through Biased Mutation. , 1997, The Plant cell.

[147]  F. Vignols,et al.  The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. , 1995, The Plant cell.

[148]  S. Wessler,et al.  Retrotransposon insertion into the maize waxy gene results in tissue-specific RNA processing. , 1997, The Plant cell.

[149]  J. Messing,et al.  Amplicons of maize zein genes are conserved within genic but expanded and constricted in intergenic regions. , 1998, The Plant journal : for cell and molecular biology.

[150]  G. Wang,et al.  Evolution of the rice Xa21 disease resistance gene family. , 1997, The Plant cell.

[151]  J. Boeke,et al.  Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. , 1998, Biochemistry.

[152]  G. Moore,et al.  Cereal Genome Evolution: Grasses, line up and form a circle , 1995, Current Biology.

[153]  J. Bennetzen,et al.  Do Plants Have a One-Way Ticket to Genomic Obesity? , 1997, The Plant cell.

[154]  A. Brennicke,et al.  Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA? , 1987, The EMBO journal.