Bacteriorhodopsin as a model for proton pumps

According to a long-standing hypothesis, membrane pumps function by flip-flopping between two protein conformations that allow alternative access of the ion binding site to the two membrane surfaces. Site-specific mutagenesis, time-resolved spectroscopy and X-ray diffraction confirm this mechanism for bacteriorhodopsin, and implicate change of electrostatic interaction at the active site as the trigger for the global protein conformation change during the proton transport cycle.

[1]  M. van Heel,et al.  Structure of mitochondrial F1-ATPase studied by electron microscopy and image processing. , 1986, Biochimica et biophysica acta.

[2]  K. Krab,et al.  Proton-pumping cytochrome c oxidase. , 1979, Biochimica et biophysica acta.

[3]  B. Malmström,et al.  Cytochrome oxidase as a redox-linked proton pump. , 1990, Acta physiologica Scandinavica. Supplementum.

[4]  S. P. Fodor,et al.  Chromophore structure in bacteriorhodopsin's N intermediate: implications for the proton-pumping mechanism. , 1988, Biochemistry.

[5]  D. Oesterhelt,et al.  Time‐resolved X‐ray diffraction study of structural changes associated with the photocycle of bacteriorhodopsin. , 1991, The EMBO journal.

[6]  R. Aggeler,et al.  Coupling between catalytic sites and the proton channel in F1F0-type ATPases. , 1994, Trends in biochemical sciences.

[7]  H J Morowitz,et al.  Molecular mechanisms for proton transport in membranes. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[8]  K. Altendorf,et al.  A hybrid adenosinetriphosphatase composed of F1 of Escherichia coli and F0 of Propionigenium modestum is a functional sodium ion pump. , 1990, Biochemistry.

[9]  P. Mitchell CHEMIOSMOTIC COUPLING IN OXIDATIVE AND PHOTOSYNTHETIC PHOSPHORYLATION , 1966, Biological reviews of the Cambridge Philosophical Society.

[10]  A. Puustinen,et al.  Mechanism of proton translocation by the respiratory oxidases. The histidine cycle. , 1994, Biochimica et biophysica acta.

[11]  J. Lanyi,et al.  Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin. , 1993, Biochimica et biophysica acta.

[12]  G. Babcock,et al.  Oxygen activation and the conservation of energy in cell respiration , 1992, Nature.

[13]  B. Malmström Cytochrome oxidase: some unsolved problems and controversial issues. , 1990, Archives of biochemistry and biophysics.

[14]  K. Fahmy,et al.  Characterization of rhodopsin-transducin interaction: a mutant rhodopsin photoproduct with a protonated Schiff base activates transducin. , 1994, Biochemistry.

[15]  J. Spudich Protein-protein interaction converts a proton pump into a sensory receptor , 1994, Cell.

[16]  J. Lanyi,et al.  Thermodynamics and energy coupling in the bacteriorhodopsin photocycle. , 1991, Biochemistry.

[17]  Y. Amemiya,et al.  Crystallographic characterization by X‐ray diffraction of the M‐intermediate from the photo‐cycle of bacteriorhodopsin at room temperature , 1991, FEBS letters.

[18]  R. Mathies,et al.  The role of back-reactions and proton uptake during the N----O transition in bacteriorhodopsin's photocycle: a kinetic resonance Raman study. , 1990, Biochemistry.

[19]  P. Boyer,et al.  The binding change mechanism for ATP synthase--some probabilities and possibilities. , 1993, Biochimica et biophysica acta.

[20]  P. Gräber The H+-ATPase from chloroplasts: Energetics of the catalytic cycle , 1994 .

[21]  C. Tanford Mechanism of free energy coupling in active transport. , 1983, Annual review of biochemistry.

[22]  R A Milligan,et al.  Structure of the actin-myosin complex and its implications for muscle contraction. , 1993, Science.

[23]  B. Malmstroem VECTORIAL CHEMISTRY IN BIOENERGETICS : CYTOCHROME C OXIDASE AS A REDOX-LINKED PROTON PUMP , 1993 .

[24]  G. Groth,et al.  Proton slip of the chloroplast ATPase: its nucleotide dependence, energetic threshold, and relation to an alternating site mechanism of catalysis. , 1993, Biochemistry.

[25]  R. Gennis,et al.  Substitution of asparagine for aspartate-135 in subunit I of the cytochrome bo ubiquinol oxidase of Escherichia coli eliminates proton-pumping activity. , 1993, Biochemistry.

[26]  R. Copeland,et al.  Proton translocation in proteins. , 1989, Annual review of physical chemistry.

[27]  R. Gennis,et al.  Energy Transduction by Cytochrome Complexes in Mitochondrial and Bacterial Respiration: The Enzymology of Coupling Electron Transfer Reactions to Transmembrane Proton Translocation , 1994 .

[28]  M. Gerstein,et al.  Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. , 1993, The EMBO journal.

[29]  J. Lanyi,et al.  Pathways of proton release in the bacteriorhodopsin photocycle. , 1992, Biochemistry.

[30]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[31]  H. Frauenfelder,et al.  Conformational substates in proteins. , 1988, Annual review of biophysics and biophysical chemistry.

[32]  A. E. Senior,et al.  ATP synthesis by oxidative phosphorylation. , 1988, Physiological reviews.

[33]  R. Henderson,et al.  Electron cryo-microscopic analysis of crystalline cytochrome oxidase. , 1990, Journal of molecular biology.

[34]  D. Oprian,et al.  The ligand-binding domain of rhodopsin and other G protein-linked receptors , 1992, Journal of bioenergetics and biomembranes.

[35]  O. Jardetzky,et al.  Simple Allosteric Model for Membrane Pumps , 1966, Nature.

[36]  J. Lanyi,et al.  Energy coupling in an ion pump. The reprotonation switch of bacteriorhodopsin. , 1994, Journal of molecular biology.

[37]  P. Dimroth,et al.  The sodium ion translocating adenosinetriphosphatase of Propionigenium modestum pumps protons at low sodium ion concentrations. , 1989, Biochemistry.

[38]  R A Mathies,et al.  From femtoseconds to biology: mechanism of bacteriorhodopsin's light-driven proton pump. , 1991, Annual review of biophysics and biophysical chemistry.

[39]  C. Strader,et al.  Structure and function of G protein-coupled receptors. , 1994, Annual review of biochemistry.

[40]  R. Capaldi,et al.  Structure and function of cytochrome c oxidase. , 1990, Annual review of biochemistry.

[41]  J. Lanyi,et al.  Pathway of proton uptake in the bacteriorhodopsin photocycle. , 1993, Biochemistry.

[42]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[43]  M. Futai,et al.  Catalysis and energy coupling of H(+)-ATPase (ATP synthase): molecular biological approaches. , 1994, Biochimica et biophysica acta.

[44]  D. Oprian,et al.  Mechanism of activation and inactivation of opsin: role of Glu113 and Lys296. , 1992, Biochemistry.

[45]  P. Brzezinski,et al.  Electron-transport-driven proton pumps display nonhyperbolic kinetics: Simulation of the steady-state kinetics of cytochrome c oxidase. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[46]  L. Sun,et al.  The proton transfers in the cytoplasmic domain of bacteriorhodopsin are facilitated by a cluster of interacting residues. , 1994, Journal of molecular biology.

[47]  R. Gennis,et al.  Insight into the active-site structure and function of cytochrome oxidase by analysis of site-directed mutants of bacterial cytochromeaa3 and cytochromebo , 1993, Journal of bioenergetics and biomembranes.

[48]  R. Birge,et al.  Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. , 1990, Biochimica et biophysica acta.