A framework for the development of implicit solvers for incompressible flow problems

This survey paper reviews some recent developments in the design of robust solution methods for the Navier-Stokes equations modelling incompressible fluid flow. There are two building blocks in our solution strategy. First, an implicit time integrator that uses a stabilized trapezoid rule with an explicit Adams-Bashforth method for error control, and second, a robust Krylov subspace solver for the spatially discretized system. Numerical experiments are presented that illustrate the effectiveness of our generic approach. It is further shown that the basic solution strategy can be readily extended to more complicated models, including unsteady flow problems with coupled physics and steady flow problems that are nondeterministic in the sense that they have uncertain input data.

[1]  H. Elman,et al.  Efficient preconditioning of the linearized NavierStokes equations for incompressible flow , 2001 .

[2]  Howard C. Elman,et al.  BOUNDARY CONDITIONS IN APPROXIMATE COMMUTATOR PRECONDITIONERS FOR THE NAVIER-STOKES EQUATIONS ∗ , 2009 .

[3]  Catherine Elizabeth Powell,et al.  A Priori Error Analysis of Stochastic Galerkin Mixed Approximations of Elliptic PDEs with Random Data , 2012, SIAM J. Numer. Anal..

[4]  R. Sani,et al.  Incompressible Flow and the Finite Element Method, Volume 1, Advection-Diffusion and Isothermal Laminar Flow , 1998 .

[5]  Andrew J. Wathen,et al.  Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.

[6]  Catherine Elizabeth Powell,et al.  Preconditioning Steady-State Navier-Stokes Equations with Random Data , 2012, SIAM J. Sci. Comput..

[7]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[8]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[9]  Howard C. Elman,et al.  Fast iterative solvers for buoyancy driven flow problems , 2011, J. Comput. Phys..

[10]  A. Spence,et al.  Is the steady viscous incompressible two‐dimensional flow over a backward‐facing step at Re = 800 stable? , 1993 .

[11]  Howard C. Elman,et al.  Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.

[12]  William Layton,et al.  Introduction to the Numerical Analysis of Incompressible Viscous Flows , 2008 .

[13]  Jaroslav Hron,et al.  A monolithic FEM-multigrid solver for non-isothermal incompressible flow on general meshes , 2009, J. Comput. Phys..

[14]  Markus Neher,et al.  Complex standard functions and their implementation in the CoStLy library , 2007, TOMS.

[15]  P. Drazin Introduction to Hydrodynamic Stability , 2002 .

[16]  J. Scott,et al.  HSL_MI20: An efficient AMG preconditioner for finite element problems in 3D , 2010 .

[17]  Andrew J. Wathen,et al.  A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..

[18]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[19]  Catherine Elizabeth Powell,et al.  Efficient Solvers for a Linear Stochastic Galerkin Mixed Formulation of Diffusion Problems with Random Data , 2008, SIAM J. Sci. Comput..

[20]  Howard C. Elman,et al.  Block-diagonal preconditioning for spectral stochastic finite-element systems , 2008 .

[21]  J. C. Simo,et al.  Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations , 1994 .

[22]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[23]  H. Elman,et al.  Efficient preconditioning of the linearized Navier-Stokes , 1999 .

[24]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[25]  David F. Griffiths,et al.  Adaptive Time-Stepping for Incompressible Flow Part II: Navier--Stokes Equations , 2010, SIAM J. Sci. Comput..

[26]  David F. Griffiths,et al.  Adaptive Time-Stepping for Incompressible Flow Part I: Scalar Advection-Diffusion , 2008, SIAM J. Sci. Comput..