The Fokker-Planck equation with subcritical confinement force

We consider the Fokker-Planck equation with subcritical confinement force field which may not derive from a potential function. We prove the existence of an equilibrium (in the case of a general force) and we establish some (polynomial and stretch exponential) rate of convergence to the equilibrium (depending on the space to which belongs the initial datum). Our results improve similar results established by Toscani, Villani [29] and Rochner , Wang [27]: the force field is more general, the spaces are more general, the rates are sharper.

[1]  Irene M. Gamba,et al.  On the Boltzmann Equation for Diffusively Excited Granular Media , 2004 .

[2]  R. Caflisch Communications in Mathematical Physics © by Springer-Verlag 1980 The Boltzmann Equation with a Soft Potential II. Nonlinear, Spatially-Periodic , 2022 .

[3]  D. Bakry,et al.  Rate of convergence for ergodic continuous Markov processes : Lyapunov versus Poincaré , 2007, math/0703355.

[4]  Kleber Carrapatoso,et al.  Landau Equation for Very Soft and Coulomb Potentials Near Maxwellians , 2015, 1512.01638.

[5]  Maria Pia Gualdani,et al.  Factorization for non-symmetric operators and exponential H-theorem , 2010, 1006.5523.

[6]  O. Kavian Remarks on the Kompaneets equation, a simplified model of the Fokker-Planck equation , 2002 .

[7]  D. Bakry,et al.  A simple proof of the Poincaré inequality for a large class of probability measures , 2008 .

[8]  R. Douc,et al.  Subgeometric rates of convergence of f-ergodic strong Markov processes , 2006, math/0605791.

[9]  Roland Schnaubelt,et al.  Polynomial stability of operator semigroups , 2006 .

[10]  A. Eberle,et al.  Quantitative Harris-type theorems for diffusions and McKean–Vlasov processes , 2016, Transactions of the American Mathematical Society.

[11]  Franccois Golse,et al.  ON THE SPEED OF APPROACH TO EQUILIBRIUM FOR A COLLISIONLESS GAS , 2010, 1009.3004.

[12]  R. Caflisch The Boltzmann equation with a soft potential , 1980 .

[13]  Yan Guo,et al.  The Landau Equation in a Periodic Box , 2002 .

[14]  Giuseppe Toscani,et al.  On the Trend to Equilibrium for Some Dissipative Systems with Slowly Increasing a Priori Bounds , 2000 .

[15]  F. Smithies Linear Operators , 2019, Nature.

[16]  R. Nagel,et al.  One-parameter Semigroups of Positive Operators , 1986 .

[17]  E. Lieb,et al.  Analysis, Second edition , 2001 .

[18]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[19]  Jürgen Voigt,et al.  A perturbation theorem for the essential spectral radius of strongly continuous semigroups , 1980 .

[20]  Cl'ement Mouhot Rate of Convergence to Equilibrium for the Spatially Homogeneous Boltzmann Equation with Hard Potentials , 2006 .

[21]  B. Perthame,et al.  General relative entropy inequality: an illustration on growth models , 2005 .

[22]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[23]  Patrick Cattiaux,et al.  Functional Inequalities for Heavy Tailed Distributions and Application to Isoperimetry , 2022 .

[24]  M. Röckner,et al.  Weak Poincaré Inequalities and L2-Convergence Rates of Markov Semigroups , 2001 .

[25]  Convergence to equilibrium for Fokker-Planck equation with a general force field , 2016, 1603.05085.

[26]  S. Mischler,et al.  Exponential Stability of Slowly Decaying Solutions to the Kinetic-Fokker-Planck Equation , 2014, Archive for Rational Mechanics and Analysis.

[27]  Thomas Duyckaerts,et al.  Non-uniform stability for bounded semi-groups on Banach spaces , 2008 .

[28]  C. Quiñinao,et al.  On a Kinetic Fitzhugh–Nagumo Model of Neuronal Network , 2015, 1503.00492.

[29]  S. Mischler,et al.  Spectral analysis of semigroups and growth-fragmentation equations , 2013, 1310.7773.

[30]  Some Remarks on Ultracontractivity , 1993 .

[31]  Thomas M. Liggett,et al.  $L_2$ Rates of Convergence for Attractive Reversible Nearest Particle Systems: The Critical Case , 1991 .

[32]  Miguel Escobedo,et al.  On self-similarity and stationary problem for fragmentation and coagulation models , 2005 .