Simulated stellar kinematics studies of high-redshift galaxies with the HARMONI Integral Field Spectrograph

We present a study into the capabilities of integrated and spatially resolved integral field spectroscopy of galaxies at z = 2–4 with the future HARMONI spectrograph for the European Extremely Large Telescope (E-ELT) using the simulation pipeline, HSIM. We focus particularly on the instrument's capabilities in stellar absorption line integral field spectroscopy, which will allow us to study the stellar kinematics and stellar population characteristics. Such measurements for star-forming and passive galaxies around the peak star formation era will provide a critical insight into the star formation, quenching and mass assembly history of high-z, and thus present-day galaxies. First, we perform a signal-to-noise study for passive galaxies at a range of stellar masses for z = 2–4, assuming different light profiles; for this population, we estimate that integrated stellar absorption line spectroscopy with HARMONI will be limited to galaxies with M* ≳ 1010.7 M⊙. Secondly, we use HSIM to perform a mock observation of a typical star-forming 1010 M⊙ galaxy at z = 3 generated from the high-resolution cosmological simulation NUTFB. We demonstrate that the input stellar kinematics of the simulated galaxy can be accurately recovered from the integrated spectrum in a 15-h observation, using common analysis tools. Whilst spatially resolved spectroscopy is likely to remain out of reach for this particular galaxy, we estimate HARMONI's performance limits in this regime from our findings. This study demonstrates how instrument simulators such as HSIM can be used to quantify instrument performance and study observational biases on kinematics retrieval; and shows the potential of making observational predictions from cosmological simulation output data.

[1]  A. Pontzen,et al.  pynbody: N-Body/SPH analysis for python , 2013 .

[2]  J. Falc'on-Barroso,et al.  MIUSCAT: extended MILES spectral coverage – I. Stellar population synthesis models , 2012, 1205.5496.

[3]  M. Cappellari pPXF: Penalized Pixel-Fitting stellar kinematics extraction , 2012 .

[4]  R. Bender,et al.  FIRST RESULTS FROM THE VIRIAL SURVEY: THE STELLAR CONTENT OF UVJ-SELECTED QUIESCENT GALAXIES AT 1.5 < z < 2 FROM KMOS , 2015, 1503.08831.

[5]  G. Brammer,et al.  SPECTROSCOPIC CONFIRMATION OF AN ULTRAMASSIVE AND COMPACT GALAXY AT z = 3.35: A DETAILED LOOK AT AN EARLY PROGENITOR OF LOCAL GIANT ELLIPTICALS , 2014, 1406.0002.

[6]  L. Ho,et al.  Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.

[7]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[8]  R. Bender,et al.  The Epochs of Early-Type Galaxy Formation as a Function of Environment , 2004, astro-ph/0410209.

[9]  Y. Mellier,et al.  Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.

[10]  G. Cresci,et al.  HOW WELL CAN WE MEASURE THE INTRINSIC VELOCITY DISPERSION OF DISTANT DISK GALAXIES? , 2011, 1108.0285.

[11]  Measuring Stellar Velocity Dispersions in Active Galaxies , 2005, astro-ph/0512462.

[12]  R. Peletier,et al.  A new chemo-evolutionary population synthesis model for early-type galaxies .1. Theoretical basis , 1996, astro-ph/9605112.

[13]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[14]  R. Davies,et al.  The ATLAS3D project – I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria , 2010, 1012.1551.

[15]  R. Davies,et al.  The SAURON project – I. The panoramic integral-field spectrograph , 2001, astro-ph/0103451.

[16]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[17]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[18]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[19]  M. Fabricius,et al.  THE KMOS3D SURVEY: DESIGN, FIRST RESULTS, AND THE EVOLUTION OF GALAXY KINEMATICS FROM 0.7 ⩽ z ⩽ 2.7 , 2014, 1409.6791.

[20]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[21]  A. Quirrenbach,et al.  CALIFA, the Calar Alto Legacy Integral Field Area survey : I. Survey presentation , 2011, 1111.0962.

[22]  G. Illingworth,et al.  Rotation of the bulge components of disk galaxies. , 1982 .

[23]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[24]  Susan A. Kassin,et al.  The angular momentum of baryons and dark matter halos revisited , 2011 .

[25]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[26]  Y. Mellier,et al.  The Science Case for Multi-Object Spectroscopy on the European ELT , 2015, 1501.04726.

[27]  Max Pettini,et al.  STRONG NEBULAR LINE RATIOS IN THE SPECTRA of z ∼ 2–3 STAR FORMING GALAXIES: FIRST RESULTS FROM KBSS-MOSFIRE , 2014, 1405.5473.

[28]  R. Bender,et al.  THE ANGULAR MOMENTUM DISTRIBUTION AND BARYON CONTENT OF STAR-FORMING GALAXIES AT z ∼ 1–3 , 2015, 1510.03262.

[29]  R. Teyssier Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES , 2001, astro-ph/0111367.

[30]  A. M. Swinbank,et al.  hsim: a simulation pipeline for the HARMONI integral field spectrograph on the European ELT , 2015, 1508.04441.

[31]  D. Weinberg,et al.  Cosmological Simulations with TreeSPH , 1995, astro-ph/9509107.

[32]  C. Maraston,et al.  The impact of thermally pulsing asymptotic giant branch stars on hierarchical galaxy formation models , 2009 .

[33]  K. Spekkens,et al.  DiskFit: a code to fit simple non-axisymmetric galaxy models either to photometric images or to kinematic maps , 2015, 1509.07120.

[34]  European Southern Observatory,et al.  THE EVOLUTION OF THE REST-FRAME V-BAND LUMINOSITY FUNCTION FROM z = 4: A CONSTANT FAINT-END SLOPE OVER THE LAST 12 Gyr OF COSMIC HISTORY , 2012, 1201.6365.

[35]  R. L. Davies,et al.  Fast and slow rotators in the densest environments: a FLAMES/GIRAFFE integral field spectroscopy study of galaxies in A1689 at z = 0.183 , 2012, 1205.5545.

[36]  Maximilian Fabricius,et al.  THE VIRUS-P EXPLORATION OF NEARBY GALAXIES (VENGA): SURVEY DESIGN, DATA PROCESSING, AND SPECTRAL ANALYSIS METHODS , 2013, 1303.1552.

[37]  S. Wuyts,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTION OF GALAXIES FROM z = 4.0 AND THE FIRST COMPREHENSIVE ANALYSIS OF ITS UNCERTAINTIES: EVIDENCE FOR MASS-DEPENDENT EVOLUTION , 2008, 0811.1773.

[38]  P. Buschkamp,et al.  THE SINS SURVEY: MODELING THE DYNAMICS OF z ∼ 2 GALAXIES AND THE HIGH-z TULLY–FISHER RELATION , 2009, 0902.4701.

[39]  P. Hopkins,et al.  Self-regulated star formation in galaxies via momentum input from massive stars , 2011, 1101.4940.

[40]  C. Maraston,et al.  On the spectral resolution of the MILES stellar library , 2010, 1012.3428.

[41]  Patrick J. McCarthy,et al.  High star formation rates as the origin of turbulence in early and modern disk galaxies , 2010, Nature.

[42]  Garth D. Illingworth,et al.  THE MOST MASSIVE GALAXIES AT 3.0 ⩽ z < 4.0 IN THE NEWFIRM MEDIUM-BAND SURVEY: PROPERTIES AND IMPROVED CONSTRAINTS ON THE STELLAR MASS FUNCTION , 2010, 1009.0269.

[43]  Princeton University.,et al.  A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS–HALO MASS RELATION FOR 0 < z < 4 , 2010, 1001.0015.

[44]  A. J. Cenarro,et al.  Evolutionary stellar population synthesis with MILES – I. The base models and a new line index system , 2010, 1004.4439.

[45]  H. Rix,et al.  STELLAR KINEMATICS OF z ∼ 2 GALAXIES AND THE INSIDE-OUT GROWTH OF QUIESCENT GALAXIES, , 2012, 1211.3424.

[46]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[47]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[48]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[49]  T. Naylor An optimal extraction algorithm for imaging photometry , 1998 .

[50]  B. Madore,et al.  THE STAR FORMATION LAW IN NEARBY GALAXIES ON SUB-KPC SCALES , 2008, 0810.2541.

[51]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[52]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[53]  S. Belli,et al.  VELOCITY DISPERSIONS AND DYNAMICAL MASSES FOR A LARGE SAMPLE OF QUIESCENT GALAXIES AT z > 1: IMPROVED MEASURES OF THE GROWTH IN MASS AND SIZE , 2013, 1311.3317.

[54]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[55]  Johan Kosmalski,et al.  HARMONI: the first light integral field spectrograph for the E-ELT , 2014, Astronomical Telescopes and Instrumentation.

[56]  Michael R. Merrifield,et al.  Caught in the act: cluster 'k+a' galaxies as a link between spirals and S0s , 2013, 1311.2842.

[57]  S. E. Persson,et al.  A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT z ∼ 4 FROM ZFOURGE , 2013, 1312.4952.

[58]  A. Kravtsov,et al.  THE IMPACT OF STELLAR FEEDBACK ON THE STRUCTURE, SIZE, AND MORPHOLOGY OF GALAXIES IN MILKY-WAY-SIZED DARK MATTER HALOS , 2015, 1509.00853.

[59]  Michele Cappellari,et al.  Adaptive spatial binning of integral-field spectroscopic data using Voronoi tessellations , 2003, astro-ph/0302262.

[60]  R. Teyssier,et al.  On the onset of galactic winds in quiescent star forming galaxies , 2007, 0707.3376.

[61]  Julien Devriendt,et al.  The impact of supernova-driven winds on stream-fed protogalaxies , 2010, 1012.2839.

[62]  Roberto Abuter,et al.  Improving the observing efficiency of SINFONI and KMOS at the VLT by factors of 2 to 4: sophisticated sky subtraction algorithms , 2012, Other Conferences.